CHEMICAL CONSTITUENTS OF THE STEMS OF DERRIS SCANDENS AND STRUCTURAL MODIFICATION OF ISOFLAVONES FOR DRUG DISCOVERY

YUTTANA SIRIWATTANASATHIEN

A THESIS PRESENTED TO RAMKHAMHAENG UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE (APPLIED CHEMISTRY)

2017

COPYRIGHTED BY RAMKHAMHAENG UNIVERSITY

ส่วนประกอบทางเคมีของลำต้นเถาวัลย์เปรียงและการปรับเปลี่ยนโครงสร้างสาร ใอโซฟลาโวนเพื่อการค้นพบยา

ยุทธนา สิริวัฒนเสถียร

วิทยานิพนธ์เสนอต่อมหาวิทยาลัยรามคำแหง
เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญา
วิทยาศาสตรมหาบัณฑิต (เคมีประยุกต์)
ปีการศึกษา 2560
ลิบสิทธิ์ของมหาวิทยาลัยรามคำแหง

Thesis Title	Chemical Constituents of the Stems of Derris scandens
	and Structural Modification of Isoflavones for Drug
	Discovery
Student's Name	Mr. Yuttana Siriwattanasathien
	Department of Chemistry, Faculty of Science
Advisory Committee	Prof. Dr. Apichart Suksamrarn Chairperson
	Assoc. Prof. Dr. Thitima Rukachaisirikul
y .	
Ramkhamhaen	g University approved this thesis as a partial fulfillment
J	or the degree of Master of Science (Applied Chemistry). Dean of Graduate School
(Dr	. Suebpong Prabyai)
Examination Commit	tee
Suit	Luc Chairperson
(Assoc. Pr	of. Dr. Sunit Suksamrarn)
Lylid	Member Member
(Prof. D	r. Apichart Suksamrarn)
Thitu	na Rulmul Member
(Assoc. Prof.	Dr. Thitima Rukachaisirikul)
Boon-1k	Yingyong narongkul Member
(Assoc. Prof. D	r. Boon-ek Yingyongnarongkul)

ABSTRACT

Thesis Title Chemical Constituents of the Stems of Derris

scandens and Structural Modification of Isoflavones

for Drug Discovery

Student's Name Mr. Yuttana Siriwattanasathien

Degree Sought Master of Science

Field of Study Applied Chemistry

Academic Year 2017

Advisory Committee

1. Prof. Dr. Apichart Suksamrarn

Chairperson

2. Assoc. Prof. Dr. Thitima Rukachaisirikul

Investigation of the stems of *Derris scandens* (Roxb.) Benth. has led to the isolation of seven known isoflavones, derrisisoflavone A (1), 5,7,4'-trihydroxy-6,8-diprenylisoflavone (7), lupalbigenin (8), scandinone (9), scanderone (28), osajin (44) and scandenin (51). The structure of these compounds were identified by comparison of spectroscopic data and some physical data with those of reported values.

Compounds **1**, **8** and **44** were subjected to structrual modification. The synthesized analogues included derrisisoflyone A 7-*O*-acetate (**124**), derrisisoflavone A 4'-*O*-acetate (**125**), derrisisoflavone A 7,4'-di-*O*-acetate (**126**), lupalbigenin 7-*O*-acetate (**127**), lupalbigenin 4'-*O*-acetate (**128**),

lupalbigenin 7,4'-di-O-acetate (129), osajin 4'-O-acetate (130), derrisisoflavone A 7-O-methyl ether (131), derrisisoflavone A 4'-O-methyl ether (132), derrisisoflavone A 7,4'-di-O-methyl ether (133), lupalbigenin 7-O-methyl ether (134), lupalbigenin 7,4'-di-O-methyl ether (135), 4'-Omethylosajin (43), tetrahydroderrisisoflavone A (136), hexahydroderrisisoflavone A (137), dihydrolupalbigenin (138), tetrahydrolupalbigenin (139), hexahydrolupalbigenin (140), tetrahydroosajin (141), hexahydroosajin (142), tetrahydrolupalbigenin 7-O-methyl ether (143), derrisisoflavone A 7-O-propanoate (144), derrisisoflavone A 4'-O-propanoate (145), derrisisoflavone A 7,4'-di-O-propanoate (146), 5'-nitrolupalbigenin (147), 2", 3"'-epoxylupalbigenin (148), 2", 3", 2"', 3"'-diepoxylupalbigenin (149), lupalbigenin 7-O-benzoate (150), lupalbigenin 7,4'-di-O-benzoate (151), 7-O-propargyllupalbigenin (152), 7,4'-di-O-propargyllupalbigenin (153) and 7-O-[1""-(carboxymethyl)-1"",H-3"",4"",5""-triazole]lupalbigenin (155). The isolated compounds and the modified analogues were subjected to butyrylcholinesterase inhibitory activity. Compound 136 exhibited the highest anti-butyrylcholinesterase activity (IC₅₀ 2.53 μ M) among the derrisisoflaven series, followed by compounds **124**, **144**, **133**, and **125** (IC₅₀ 6.07, 10.31, 12.58, and 16.04 μ M, respectively) and the activity was higher than the parent compound 1. Compound 138 exhibited activity higher (IC₅₀ 0.64 μ M) than the parent compound 8 and was the analaogue that exhibited the highest antibutyrylcholinesterase inhibitory activity evaluations in this study.

Among them, compounds **138** and **136** exhibited significant activity of 4.8 and 1.2-fold, respectively, higher than that of reference anti-Alzheimer drug, galantamine.

บทคัดย่อ

ชื่อเรื่องวิทยานิพนธ์ ส่วนประกอบทางเคมีของลำต้นเถาวัลย์เปรียงและการ

ปรับเปลี่ยนโครงสร้างสารไอโซฟลาโวนเพื่อการค้นพบยา

ชื่อผู้เขียน นายยุทธนา สิริวัฒนเสถียร

ชื่อปริญญา วิทยาศาสตรมหาบัณฑิต

สาขาวิชา เคมีประยุกต์

ปีการศึกษา 2560

คณะกรรมการที่ปรึกษาวิทยานิพนธ์

1. ศาสตราจารย์ คร. อภิชาต สุขสำราญ ปร

ประธานกรรมการ

2. รองศาสตราจารย์ คร. ธิติมา รุกขไชยศิริกุล

การศึกษาส่วนประกอบทางเคมีของลำต้นของเถาวัลย์เปรียง (Derris scandens (Roxb.) Benth.) สามารถแยกสารกลุ่มใอ โซฟลาโวนที่เคยพบมาแล้ว 7 ชนิค คือ derrisisoflavone A (1), 5,7,4'-trihydroxy-6,8-diprenylisoflavone (7), lupalbigenin (8), scandinone (9), scanderone (28), osajin (44) และ scandenin (51) โครงสร้างของสาร เหล่านี้หาได้จากการเปรียบเทียบข้อมูลทางสเปกโทรสโกปีและข้อมูลทางกายภาพที่หาได้กับข้อมูลที่มีผู้รายงานไว้

สาร 1, 8 และ 44 เป็นสารที่ใช้ในการปรับเปลี่ยนโครงสร้างได้แอนาลอก คือ derrisisoflavone A 7-O-acetate (124), derrisisoflavone A 4'-O-acetate (125), derrisisoflavone A 7,4'-di-O-acetate (126), lupalbigenin 7-O-acetate (127), lupalbigenin 4'-O-acetate (128), lupalbigenin 7,4'-di-O-acetate (129), osajin 4'-O-acetate (130), derrisisoflavone A 7-O-methyl ether (131), derrisisoflavone A 4'-O-methyl ether (132), derrisisoflavone A 7,4'-di-O-methyl ether (133), lupalbigenin 7-O-methyl ether (134), lupalbigenin 7,4'-di-O-methyl ether (135), 4'-O-methylosajin (43),

tetrahydroderrisisoflavone A (136), hexahydroderrisisoflavone A (137), dihydrolupalbigenin (138), tetrahydrolupalbigenin (139), hexahydrolupalbigenin (140), tetrahydroosajin (141), hexahydroosajin (142), tetrahydrolupalbigenin 7-O-methyl ether (143), derrisisoflavone A 7-O-propanoate (144), derrisisoflavone A 4'propanoate (145), derrisisoflavone A 7,4'-di-O-propanoate (146), 5'-nitrolupalbigenin (147), 2", 3"'-epoxylupalbigenin (148), 2", 3", 2"', 3"'-diepoxylupalbigenin (149), lupalbigenin 7-O-benzoate (150), lupalbigenin 7,4'-di-O-benzoyl ester (151), 7-Opropargyllupalbigenin (152), 7,4'-di-O-propargyllupalbigenin (153) และ 7-O-[1""-(carboxymethyl)-1"",H-3"",4"",5""-triazole]lupalbigenin (155) ในกลุ่มได้นำสารที่แยก ได้และแอนาลอกทดสอบฤทธิ์ทางชีวภาพคือ ฤทธิ์การยับยั้งเอนไซม์บิวทีริล โคลีนเอสเทอ เรส พบว่าสาร 136 มีฤทธิ์ในการยับยั้งต่อเอนไซม์บิวทีริลโคลีนเอสเทอเรสมากที่สุดที่ค่า IC_{50} 2.53 μM ตามด้วยสาร **124**, **144**, **133** และ **125** แสดงค่า IC_{50} เท่ากับ 6.07, 10.31, 12.58 และ 16.04 $\mu {
m M}$ ตามลำคับ และแสดงฤทธิ์ในการยับยั้งมากกว่าสารตั้งต้น ${
m 1}$ และ สารประกอบ 138 มีฤทธิ์ ${
m IC}_{50}$ 0.64 $\mu{
m M}$ ซึ่งมากกว่าสารต้นต้น ${
m 8}$ และเป็นสารที่มีฤทธิ์ ต้านเอนไซม์บิวทีริลโคลีนเอสสูงสุดในการศึกษาครั้งนี้ สาร 138 และ 136 แสดงผลการ ยับยั้งได้ดีเป็น 4.8 และ 1.2 เท่าตามลำดับ เมื่อเปรียบเทียบกับกาลานทามีนซึ่งใช้เป็นยา ์ ต้านอัลไซเมอร์มาตรฐาน

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my supervisor,

Professor Dr. Apichart Suksamrarn, for his inspiration, guidance, valuable
knowledge, kindness, helpful supervision and hearty encouragement throughout
my study. I am grateful to express my special thanks to Assistant Professor
Dr. Ratchanaporn Chokchaisiri, Department of Chemistry, School of Science,
University of Phayao for her encouragement and guidance.

I would also like to thank Associate Professor Dr. Thitima Rukachaisirikul and Associate Professor Dr. Boon-ek Yingyongnarongkul for their kind and helpful advice. I am grateful to Associate Professor Dr. Sunit Suksamrarn, Department of Chemistry, Faculty of Science, Srinakharinwirot University for her useful comments.

Financial support from the Center of Excellence for Innovation in Chemistry (PERCH-CIC), Office of the Higher Education Commission, Ministry of Education, is gratefully acknowledged.

I am grateful to Miss Waraluck Chaichompoo for her encouragement and general guidance. I am indebted to Miss Waraluck Chaichompoo and Miss Parichat Suebsakwong for recording the nuclear magnetic resonance spectra. I am also indebted to Miss Kanyarat Chanchang for recording the mass spectra. I am grateful to Miss. Sukanya Kunkaewom and Mr. Wachirachai Pabuprapap for recording the infrared spectra.

I would also like to thank the Ph.D. and the Master students of the Department of Chemistry, Faculty of Science, Ramkhamhaeng University for general assistance.

Finally, this work was successful with support and encouragement from my lovely family.

Yuttana Siriwattanasathien

TABLE OF CONTENTS

	Page
ABSTRACT (ENGLISH)	(iv)
ABSTRACT (THAI)	(vii)
ACKNOWLEDGEMENTS	(ix)
LIST OF TABLES	(xvi)
LIST OF FIGURES	(xviii)
LIST OF SCHEMES	(xxvi)
Chapter	
1 INTRODUCTION	1
2 EXPERIMENTAL	36
General Techniques	36
Solvent	36
Chromatography	36
Thin Layer Chromatography (TLC)	36
Column Chromatography (CC)	37
Physical Constant	38
Spectroscopy	38
Infrared (IR) Spectra	38
Nuclear Magnetic Resonance (NMR) Spectra	38
Mass Spectra	38
Source of Plant Materials	38

Chapter		Page
	Extraction and Isolation of the Stems of <i>Derris scandens</i>	39
	Hexane Extract	40
	Group 4 (Fractions 20-23)	41
	Osajin (44)	42
	5,7,4'-trihydroxy-6,8-diprenylisoflavone (7)	43
	EtOAc Extract	43
	Group 2 (Fractions 5-11)	44
	Scanderone (28)	46
	Group 3 (Fractions 12-19)	46
	Lupalbigenin (8)	47
	Group 4 (Fractions 20-22)	47
	Scandinone (9)	48
	Group 6 (Fractions 28-33)	48
	Derrisisoflavone A (1)	50
	Scandenin (51)	50
	Structural Modification	51
	Acetylation of Derrisisoflavone A (1)	51
	Acetylation of Lupalbigenin (8)	53
	Acetylation of Osajin (44)	55
	Methylation of Derrisisoflavone A (1)	56
	Methylation of Lupalbigenin (8)	58
	Methylation of Osajin (44)	59

Chapter		Page
	Catalytic Hydrogenation of Derrisisoflavone A (1)	60
	Catalytic Hydrogenation of Lupalbigenin (8)	62
	Catalytic Hydrogenation of Osajin (44)	64
	Catalytic Hydrogenation of Lupalbigenin 7-O-methyl ether	
	(134)	65
	Esterification of Derrisisoflavone A (1) with Propionic	
	anhydride	66
	Nitration of Lupalbigenin (8)	68
	Epoxidation of Lupalbigenin (8)	69
	Benzoylation of Lupalbigenin (8)	70
	Reaction of Lupalbigenin (8) with Propargyl bromide	72
	Synthesis of 2-Azidoacetic acid (154)	73
	Click reaction of 7-O-Propargylluaplbigenin (152) with	
	2-Azidoacetic acid (154)	74
	Anti-Cholinesterase Activities	107
3]	REULTS AND DISCUSSION	111
	Chemical Constituents of <i>Derris scandens</i>	111
	Derrisisoflavone A (1)	111
	5,7,4'-trihydroxy-6,8-diprenylisoflavone (7)	113
	Lupalbigenin (8)	114
	Scandinone (9)	115
	Scanderone (28)	116

Chapter		Page
	Osajin (44)	117
	Scandenin (51)	118
	Chemical Modification	119
	Acetylation of Derrisisoflavone A (1)	120
	Acetylation of Lupalbigenin (8)	122
	Acetylation of Osajin (44)	124
	Methylation of Derrisisoflavone A (1)	125
	Methylation of Lupalbigenin (8)	127
	Methylation of Osajin (44)	129
	Catalytic of Hydrogenation of Derrisisoflavone A (1)	130
	Catalytic of Hydrogenation of Lupalbigenin (8)	132
	Catalytic of Hydrogenation of Osajin (44)	134
	Catalytic of Hydrogenation of Lupalbigenin 7-O-methyl	
	ether (134)	136
	Esterification of Derrisisoflavone A (1) with Propionic	
	anhydride	137
	Nitration of Lupalbigenin (8)	139
	Epoxidation of Lupalbigenin (8)	140
	Benzoylation of Lupalbeigenin (8)	142
	Reaction of Lupalbigenin (8) with Propargyl bromide	144
	Synthesis of 2-Azidoacetic (154)	145

Chapter	Page
Click reaction of 7-O-Propargylluaplbigenin (152) with	
2-Azidoacetic acid (154)	146
Biological of Activities	148
4 CONCLUSION	150
Structural Identification of Isolated Isoflavones	150
Structural Modification	150
Biological Activities	151
APPENDICES	153
REFERENCES	248
VITAE	252

LIST OF TABLES

Table		Page
1	Rotenoids from <i>Derris</i> species	9
2	Coumaronochromones from Derris species	15
3	Pterocarps from <i>Derris</i> species	16
4	Pterocarpans from <i>Derris</i> species	17
5	Flavones from <i>Derris</i> species	18
6	Flavanonols from <i>Derris</i> species	28
7	Flavanones from <i>Derris</i> species	29
8	Isoflavones from <i>Derris</i> species	30
9	Chalcones from <i>Derris</i> species	32
10	Tubaic acid from <i>Derris</i> species	35
11	¹ H- and ¹³ C-NMR Data of Compound 1	76
12	¹ H- and ¹³ C-NMR Data of Compound 7	77
13	¹ H- and ¹³ C-NMR Data of Compound 8	78
14	¹ H- and ¹³ C-NMR Data of Compound 9	79
15	¹ H- and ¹³ C-NMR Data of Compound 28	80
16	¹ H- and ¹³ C-NMR Data of Compound 43	81
17	¹ H- and ¹³ C-NMR Data of Compound 44	82
18	¹ H- and ¹³ C-NMR Data of Compound 51	83
	¹ H- and ¹³ C-NMR Data of Compounds 124 and 125	84
20	¹ H- and ¹³ C-NMR Data of Compound 126	85

Table		Page
21	¹ H- and ¹³ C-NMR Data of Compounds 127 and 128	86
22	¹ H- and ¹³ C-NMR Data of Compound 129	87
23	¹ H- and ¹³ C-NMR Data of Compound 130	88
24	¹ H- and ¹³ C-NMR Data of Compounds 131 and 132	89
25	¹ H- and ¹³ C-NMR Data of Compound 133	90
26	¹ H- and ¹³ C-NMR Data of Compounds 134 and 135	91
27	¹ H- and ¹³ C-NMR Data of Compounds 136 and 137	92
28	¹ H- and ¹³ C-NMR Data of Compounds 138 and 139	93
29	¹ H- and ¹³ C-NMR Data of Compound 140	94
30	¹ H- and ¹³ C-NMR Data of Compounds 141 and 142	95
31	¹ H- and ¹³ C-NMR Data of Compound 143	96
32	¹ H- and ¹³ C-NMR Data of Compounds 144 and 145	97
33	¹ H- and ¹³ C-NMR Data of Compound 146	98
34	¹ H- and ¹³ C-NMR Data of Compound 147	99
35	¹ H- and ¹³ C-NMR Data of Compounds 148 and 149	100
36	¹ H- and ¹³ C-NMR Data of Compounds 150 and 151	101
37	¹ H- and ¹³ C-NMR Data of Compounds 152 and 153	103
38	¹ H- and ¹³ C-NMR Data of Compound 154	105
39	¹ H- and ¹³ C-NMR Data of Compound 155	106
40	Anti-cholinesterase Activities of Some Compounds Isolated	
	from D. scandens	108
41	Anti-cholinesterase Activities of Modified Analogues	109

LIST OF FIGURES

Fi	gure		Page
	1	¹ H-NMR Spectrum of Derrisisoflavone A (1) in CDCl ₃	154
	1a	Expansion of ¹ H-NMR Spectrum of Derrisisoflavone A (1) in	
		CDCl ₃	155
	1b	Expansion of ¹ H-NMR Spectrum of Derrisisoflavone A (1) in	
		CDCl ₃	156
	1 c	¹³ C-NMR Spectrum of Derrisisoflavone A (1) in CDCl ₃	157
	2	¹ H-NMR Spectrum of 5,7,4'-Trihydroxy-6,8-diphenylisoflavone	
		(7) in CDCl ₃	158
	2a	Expansion of ¹ H-NMR Spectrum of 5,7,4'-Trihydroxy-6,8-	
		diphenylisoflavone (7) in CDCl ₃	159
	2b	Expansion of ¹ H-NMR Spectrum of 5,7,4'-Trihydroxy-6,8-	
		diphenylisoflavone (7) in CDCl ₃	160
	2c	¹³ C-NMR Spectrum of 5,7,4'-Trihydroxy-6,8-diphenylisoflavone	
		(7) in CDCl ₃	161
	3	¹ H-NMR Spectrum of Lupalbigenin (8) in CDCl ₃	162
	3a	Expansion of ¹ H-NMR Spectrum of Lupalbigenin (8) in CDCl ₃	163
	3b	Expansion of ¹ H-NMR Spectrum of Lupalbigenin (8) in CDCl ₃	164
	3c	¹³ C-NMR Spectrum of Lupalbigenin (8) in CDCl ₃	165
	4	¹ H-NMR Spectrum of Scandinone (9) in CDCl ₃ + 2 Drops of	
		CD ₃ OD	166

Figure	e	Page
4a	Expansion of ¹ H-NMR Spectrum of Scandinone (9) in CDCl ₃ +	
	2 Drops of CD ₃ OD	167
4b	Expansion of ¹ H-NMR Spectrum of Scandinone (9) in CDCl ₃ +	
	2 Drops of CD ₃ OD	168
4c	¹³ C-NMR Spectrum of Scandinone (9) in CDCl ₃ + 2 Drops of	
	CD ₃ OD	169
5	¹ H-NMR Spectrum of Scanderone (28) in CDCl ₃ + 2 Drops of	
	CD ₃ OD	170
5a	Expansion of ¹ H-NMR Spectrum of Scanderone (28) in CDCl ₃ +	
	2 Drops of CD ₃ OD	171
5b	Expansion of ¹ H-NMR Spectrum of Scanderone (28) in CDCl ₃ +	
	2 Drops of CD ₃ OD	172
5c	¹³ C-NMR Spectrum of Scanderone (28) in CDCl ₃ + 2 Drops of	
	CD ₃ OD	173
6	¹ H-NMR Spectrum of 4'-O-Methylosajin (43) in CDCl ₃	174
6a	¹³ C-NMR Spectrum of 4'- <i>O</i> -Methylosajin (43) in CDCl ₃	175
7	¹ H-NMR Spectrum of Osajin (44) in CDCl ₃	176
7a	Expansion of ¹ H-NMR Spectrum of Osajin (44) in CDCl ₃	177
7b	Expansion of ¹ H-NMR Spectrum of Osajin (44) in CDCl ₃	178
7c	¹³ C-NMR Spectrum of Osajin (44) in CDCl ₃	179
8	¹ H-NMR Spectrum of Scandenin (51) in CDCl ₃	180
8a	Expansion of ¹ H-NMR Spectrum of Scandenin (51) in CDCl ₃	181

Figure Pa		Page
8b	Expansion of ¹ H-NMR Spectrum of Scandenin (51) in CDCl ₃	182
8c	¹³ C-NMR Spectrum of Scandenin (51) in CDCl ₃	183
9	¹ H-NMR Spectrum of Derrisisoflavone A 7- <i>O</i> -acetate (124) in	
	CDCl ₃	184
9a	¹³ C-NMR Spectrum of Derrisisoflavone A 7- <i>O</i> -acetate (124) in	
	CDCl ₃	185
10	¹ H-NMR Spectrum of Derrisisoflavone A 4'-O-acetate (125) in	
	CDCl ₃	186
10a	¹³ C-NMR Spectrum of Derrisisoflavone A 4'-O-acetate (125) in	
	CDCl ₃	187
11	¹ H-NMR Spectrum of Derrisisoflavone A 7,4'-di- <i>O</i> -acetate (126)	
	in CDCl ₃	188
11a	¹³ C-NMR Spectrum of Derrisisoflavone A 7,4'-di- <i>O</i> -acetate (126)	
	in CDCl ₃	189
12	¹ H-NMR Spectrum of Lupalbigenin 7- <i>O</i> -acetate (127) in CDCl ₃	190
12a	¹³ C-NMR Spectrum of Lupalbigenin 7- <i>O</i> -acetate (127) in CDCl ₃	191
13	¹ H-NMR Spectrum of Lupalbigenin 4'-O-acetate (128) in CDCl ₃	192
13a	¹³ C-NMR Spectrum of Lupalbigenin 4'-O-acetate (128) in CDCl ₃	193
14	¹ H-NMR Spectrum of Lupalbigenin 7,4'-di- <i>O</i> -acetate (129) in	
	CDCl ₃	194
14a	¹³ C-NMR Spectrum of Lupalbigenin 7,4'-di- <i>O</i> -acetate (129) in	
	CDCl ₃	195

Figure	Page
15 ¹ H-NMR Spectrum of Osajin 4'-O-acetate (130) in CDCl ₃	196
15a ¹³ C-NMR Spectrum of Osajin 4'-O-acetate (130) in CDCl ₃	197
16 ¹ H-NMR Spectrum of Derrisisoflavone A 7- <i>O</i> -methyl ether (131)	
in CDCl ₃	198
16a ¹³ C-NMR Spectrum of Derrisisoflavone A 7- <i>O</i> -methyl ether (131)	
in CDCl ₃	199
17 ¹ H-NMR Spectrum of Derrisisoflavone A 4'- <i>O</i> -methyl ether (132)	
in CDCl ₃	200
17a ¹³ C-NMR Spectrum of Derrisisoflavone A 4'-O-methyl ether (132)	
in CDCl ₃	201
18 ¹ H-NMR Spectrum of Derrisisoflavone A 7,4'-di- <i>O</i> -methyl ether	
(133) in CDCl ₃	202
18a ¹³ C-NMR Spectrum of Derrisisoflavone A 7,4'-di-O-methyl ether	
(133) in CDCl ₃	203
19 ¹ H-NMR Spectrum of Lupalbigenin 7- <i>O</i> -methyl ether (134)	
in CDCl ₃	204
19a ¹³ C-NMR Spectrum of Lupalbigenin 7- <i>O</i> -methyl ether (134)	
in CDCl ₃	205
20 ¹ H-NMR Spectrum of Lupalbigenin 7,4'-di- <i>O</i> -methyl ether	
(135) in CDCl ₃	206
20a ¹³ C-NMR Spectrum of Lupalbigenin 7,4'-di-O-methyl ether	
(135) in CDCl ₃	207

Figure
21 ¹ H-NMR Spectrum of Tetrahydroderrisisoflavone A (136) in
CDCl ₃ + 2 Drops of CD ₃ OD
21a ¹³ C-NMR Spectrum of Tetrahydroderrisisoflavone A (136) in
CDCl ₃ + 2 Drops of CD ₃ OD
22 ¹ H-NMR Spectrum of Hexahydroderrisisoflavone A (137) in
CDCl ₃ + 2 Drops of CD ₃ OD
22a ¹³ C-NMR Spectrum of Hexahydroderrisisoflavone A (137) in
CDCl ₃ + 2 Drops of CD ₃ OD
23 ¹ H-NMR Spectrum of Dihydrolupalbigenin (138) in CDCl ₃
23a ¹³ C-NMR Spectrum of Dihydrolupalbigenin (138) in CDCl ₃
24 ¹ H-NMR Spectrum of Tetrahydrolupalbigenin (139) in
$CD_3OD + CDCl_3$
24a ¹³ C-NMR Spectrum of Tetrahydrolupalbigenin (139) in
$CD_3OD + CDCl_3$
25 ¹ H-NMR Spectrum of Hexahydrolupalbigenin (140) in CDCl ₃
25a ¹³ C-NMR Spectrum of Hexahydrolupalbigenin (140) in CDCl ₃
¹ H-NMR Spectrum of Tetrahydroosajin (141) in CDCl ₃
26a ¹³ C-NMR Spectrum of Tetrahydroosajin (141) in CDCl ₃
27 ¹ H-NMR Spectrum of Hexahydroosajin (142) in CDCl ₃
27a ¹³ C-NMR Spectrum of Hexahydroosajin (142) in CDCl ₃
28 ¹ H-NMR Spectrum of Tetrahydrolupalbigenin 7- <i>O</i> -methyl ether
(143) in CDCl ₃

Figure	Page
28a ¹³ C-NMR Spectrum of Tetrahydrolupalbigenin 7-O-methyl ether	
(143) in CDCl ₃	223
29 ¹ H-NMR Spectrum of Derrisisoflavone A 7- <i>O</i> -propanoate (144)	
in CDCl ₃	224
29a ¹³ C-NMR Spectrum of Derrisisoflavone A 7- <i>O</i> -propanoate (144)	
in CDCl ₃	225
30 ¹ H-NMR Spectrum of Derrisisoflavone A 4'-O-propanoate (145)	
in CDCl ₃	226
30a ¹³ C-NMR Spectrum of Derrisisoflavone A 4'- <i>O</i> -propanoate (145)	
in CDCl ₃	227
31 ¹ H-NMR Spectrum of Derrisisoflavone A 7,4'-di- <i>O</i> -propanoate	
(146) in CDCl ₃	228
31a ¹³ C-NMR Spectrum of Derrisisoflavone A 7,4'-O-dipropanoate	
(146) in CDCl ₃	229
32 ¹ H-NMR Spectrum of 5'-Nitrolupalbigenin (147) in	
CDCl ₃ + 2 Drops of CD ₃ OD	230
32a ¹³ C-NMR Spectrum of 5'-Nitrolupalbigenin (147) in	
CDCl ₃ + 2 Drops of CD ₃ OD	231
33 ¹ H-NMR Spectrum of 2",3"'-Epoxylupalbigenin (148) in	
CDCl ₃	232
33a ¹³ C-NMR Spectrum of 2''',3'''-Epoxylupalbigenin (148) in	
CDCl ₃	233

Figur	e
34	¹ H-NMR Spectrum of 2",3",2"",3""-Diepoxylupalbigenin (149)
	in CD ₃ OD
34a	a ¹³ C-NMR Spectrum of 2",3",2"",3""-Diepoxylupalbigenin (149)
	in CD ₃ OD
35	¹ H-NMR Spectrum of Lupalbigenin 7- <i>O</i> -benzoate (150) in
	CDCl ₃
35a	a ¹³ C-NMR Spectrum of Lupalbigenin 7- <i>O</i> -benzoate (150) in
	CDCl ₃
36	¹ H-NMR Spectrum of Lupalbigenin 7,4'-di- <i>O</i> -benzoate (151) in
	CDCl ₃
36a	a ¹³ C-NMR Spectrum of Lupalbigenin 7,4′-di- <i>O</i> -benzoate (151)
	in CDCl ₃
37	¹ H-NMR Spectrum of 7- <i>O</i> -Propargyllupalbigenin (152) in
	CDCl ₃
37a	a ¹³ C-NMR Spectrum of 7- <i>O</i> -Propargyllupalbigenin (152) in
	CDCl ₃
38	¹ H-NMR Spectrum of 7,4'-Di- <i>O</i> -propargyllupalbigenin (153) in
	CDCl ₃
38a	a ¹³ C-NMR Spectrum of 7,4'-Di- <i>O</i> -propargyllupalbigenin (153) in
	CDCl ₃
39	¹ H-NMR Spectrum of 2-Azidiacetic acid (154) in CDCl ₃
	a ¹³ C-NMR Spectrum of 2-Azidiacetic acid (154) in CDCl ₃

Fi	gur	e	Page
	40	¹ H-NMR Spectrum of 7- <i>O</i> -[1''''-(Carboxymethyl)-1'''', <i>H</i> -3'''',4'''',	
		5''''-triazole]lupalbigenin (155) in CD ₃ OD	246
	40a	¹³ C-NMR Spectrum of 7- <i>O</i> -[1''''-(Carboxymethyl)-1'''', <i>H</i> -3'''',4'''',	
		5''''-triazole]lupalbigenin (155) in CD ₃ OD	247

LIST OF SCHEMES

Scheme		
1	Extraction of the Stems of <i>D. scandens</i>	39
2	Fractionation of the Hexane Extract of <i>D. scandens</i>	40
3	Fractionation of Group 4 (Fractions 20-23) of the Hexane Extract	41
4	Fractionation of Subfraction (Fractions 55-74) of the Scheme 3	42
5	Fractionation of the EtOAc Extract of <i>D. scandens</i>	44
6	Fractionation of Group 2 (Fractions 5-11) of the EtOAc Extract	45
7	Fractionation of Group 3 (Fractions 12-19) of the EtOAc Extract	46
8	Fractionation of Group 4 (Fractions 20-22) of the EtOAc Extract	47
9	Fractionation of Subfraction 6 (Fractions 76-79) of Scheme 8	48
10	Fractionation of Group 6 (Fractions 28-33) of the EtOAc Extract.	49

CHAPTER 1

INTRODUCTION

The genus *Derris* belongs to the family Fabaceae, comprising approximately 92 species distributed throughout Southest Asian and Southwest Pacific islands. There are 17 species of the genus *Derris* in Thailand. Derris scandens Benth. is a well-known folk medicinal plant and commonly knows as 'Tao-Wan-Priang'. Its dried stem has been used as an expectorant, antitussive, diuretic, and antidysentery agent and for the treatment of muscle aches and pains. Some of the isolates from *D. scandens* exhibited antidermatophyte activity, hypotensive, anti-hypertensive, anti-HIV, antibacterial, anti-inflammatory and α -glucosidase enzyme inhibitory activities. α -7

D. scandens has been reported to process several other biological activities and chemical constituents as follows.

In 1999, Sekine *et al.*² investigated the chemical constituents of the EtOH extract of the stems of *D. scandens*, and six new diprenylisoflavones, derrisisoflavone A (1), derrisisoflavone B (2), derrisisoflavone C (3), derrisisoflavone D (4), derrisisoflavone E (5), derrisisoflavone F (6), together with six known isoflavones, 5,7,4'-trihydroxy-6,8-diprenylisoflavone (7), lupalbigenin (8), scandinone (9), erysenegalensein E (10), lupinisol (11) and lupinisoflavone G (12) were isolated. These compounds show anti-dermatophyte activity.

In 2002, Rukachaisirikul *et al.*³ studied the water extract of the stems of *D. scandens*. This led to the isolation and identification of derriscandenoside A (13), derriscandenoside B (14), derriscandenoside C (15), derriscandenoside D (16), derriscandenoside E (17), derriscanoside A (18), derriscanoside B (19), formononetin 7-O- β -glucopyranoside (20), 8-hydroxy-4',7-dimethoxyisoflavone 8-O- β -glucopyranoside (21), 7-hydroxy-4'-8-dimethoxyisoflavone 7-O- β -glucopyranoside (22), diadzein 7-O-[α -rhamopyransoyl-(1 \rightarrow 6)- β -glucopyranoside (23), formononetin 7-O-[α -rhamopyransoyl-(1 \rightarrow 6)- β -glucopyranoside (24), and genistein 7-O-[α -rhamopyransoyl-(1 \rightarrow 6)- β -glucopyranoside (25) were isolated. These rhamnosyl-(1 \rightarrow 6)-glycosyl isoflavones exhibited hypotensive activity.

In 2004, Mahabusarakam *et al.*⁴ investigated the chemical constituents of the methanol extract of the stems of *D. scandens*, and one new benzil derivative, scandione (26), and two new isoflavones, scandenal (27), scanderone (28), with fifteen known compounds flamichapparin B (29), lupalbigenin (8), flemichapparin C (30), isorobustone (31), 5-hydroxy-2",2"-dimethylchromeno-[6,7:5",6"]-2"',2"'-dimethylchromeno-[3',4':5"',6"']isoflavone (32), ulexone A (33), chandalone (34), maackiain (35), isochandalone (36), scandinone (9), derrisisoflavone A (1), santal (37), lupiwighteone (38), 3'-methylorobol (39) and genistein (40). Compounds 1, 9, 27-29, 34-35 and 37-38 exhibited hypotensive activity.

(29)
$$R = H_2$$

$$(30) R = O$$

(34)

In 2006, Ganapaty *et al.*⁵ investigated the chemical constituents of the chloroform extract of the leaves and roots of *D. scandens*, and two known flavonoids, ovalifavanone (**41**) and lupinifolin (**42**). These flavonoids exhibited anti-inflammatory activity.

In 2007, Rao *et al.*⁶ studied the hexane and chlroform extracts of the whole plant of *D. scandens*. This led to the isolation and identification of 4'-*O*-methylosajin (43), osajin (44), 4'-*O*-methylosadinone (45), 5,7,4'-trihydroxy-6,8-diprenylisoflavone (7), isoscandinone (46), scandenin A (47), scandinin B (48), scandenone (49), scandinone (9) lupalbigenin (8) derrisisoflavone A (1),

derrisisoflavone C (3), 4',4-O-dimethylscandenin (50) and scandenin (51). Compounds 7, 43-44 and 45 exhibited α -glucosidase inhibitory activity.

$$(43) R_{1} = H, R_{2} = CH_{3}$$

$$(44) R_{1} = H, R_{2} = H$$

$$(44) R_{1} = H, R_{2} = H$$

$$(45) R_{1} = CH_{3}, R_{2} = CH_{3}$$

$$(46) R_{1} = CH_{3}, R_{2} = H$$

$$(49) R_{1} = H, R_{2} = H$$

$$(45) R_{1} = CH_{3}, R_{2} = CH_{3}$$

(48)

 $(47) R_1 = H, R_2 = CH_3$

(51) $R_1 = H$, $R_2 = H$

(50) $R_1 = CH_3$, $R_2 = CH_3$

In 2010, Babu *et al.*⁷ studied the hexane extract of the whole plant of *D. scandens* and one new isoflavone derivative, scandinone A (**52**), together with eleven known isoflavones, 4'-*O*-methylosajin (**43**), osajin (**44**), 4'-*O*-methyl scandinone (**53**), derrisisoflavone A (**1**), 5,7,4'-trihydroxy-6,8-diprenylisoflavone (**7**), scandenone (**49**), scandinone (**9**), 4',4-*O*-dimethylscandenin (**50**),

derrisisoflavone D (4), 4'-O-methylsenegalensein (54) and scandenin B (55). Compounds 1, 4, 7, 9, 49, 52 and 54 exhibited α -glucosidase inhibitory activity.

Apart from *D. scandens*, other *Derris* species have been investigated for chemical constituents and some of the isolated compounds were subjected to biological testing. Isoflavones isolated from *Derris* species are shown in Tables 1-10.

Table 1 Rotenoids from Derris species

Compound	Extract	Biological	Year [Ref.]
[Source]		activity	
OH OH OH OCH ₃ OCH ₃ 4',5'-Dihydroxy-6a,12a- dehydrodeguelin (56) [D. elliptica]	EtOH	-	2008 [9]
OH OH OCH ₃ OCH ₃ 11',4',5'-Trihydroxy-6a,12a- dehydrodeguelin	EtOH	-	2008 [9]
(57)			
[D. elliptica]			

Table 1 (continued)

Compound	Extract	Biological	Year [Ref.]
[Source]		activity	
H O H O H O O CH ₃	EtOH	-	2008 [9]
Rotenone			
(58)			
[D. elliptica]			
OH OHOOCH3	EtOH	-	2008 [9]
Deguelin			
(59)			
[D. elliptica]			
O NH OCH3	EtOH	-	2009 [10]
2-Hydroxy-5-aminorotenonone			
(60)			
[D. elliptica]			

Compound	Extract	Biological	Year [Ref.]
[Source]		activity	
$f(G_{3})$	EtOH ^{a,b} MeOH	Antibacterial activity against Helicobacter pylori Antibacterial activity against Helicobacter pylori	2012 [11] ^a 2014 [16] ^b 2014 [16]
[D. malaccensis] OH OH OH OCH ₃ OCH ₃ Derrisin (63) [D. malaccensis]	МеОН	-	2014 [16]

Compound	Extract	Biological	Year [Ref.]
[Source]		activity	
OH OH OH OCH ₃ OCH ₃ 4',5'-Dihydroxytephrosin (64) [D. malaccensis]	МеОН	-	2014 [16]
Rotenone (65) [D. malaccensis]	МеОН	Antibacterial activity against Helicobacter pylori	2014 [16]
Rotenolone (66)	МеОН	Antibacterial activity against Helicobacter pylori	2014 [16]
[D. malaccensis]		руюн	

Compound	Extract	Biological	Year [Ref.]
[Source]		activity	
Deguelin (67) [D. malaccensis]	МеОН	Antibacterial activity against Helicobacter pylori	2014 [16]
$ \begin{array}{c} $	МеОН	Antibacterial activity against Helicobacter pylori	2014 [16]
$ \begin{array}{c} & \stackrel{\text{H}}{\longrightarrow} \\ & \stackrel{\text{O}}{\longrightarrow} \\ & \text$	МеОН	Antibacterial activity against Helicobacter pylori	2014 [16]
r			

Compound	Extract	Biological	Year [Ref.]
[Source]		activity	
Dehydrodeguelin (70) [D. malaccensis]	МеОН	Antibacterial activity against Helicobacter pylori	2014 [16]
13-Homo-13-oxa-6a,12a-dehydrodeguelin (71) [D. malaccensis]	МеОН	Antibacterial activity against Helicobacter pylori	2014 [16]

Table 2 Coumaronochromones from *Derris* species

	Biological	Year [Ref.]
	activity	
EtOH	-	2012 [11]
EtOH	Exhibited moderate insecticidal activity against larvae	2012 [11]
		EtOH - EtOH Exhibited moderate insecticidal activity

Table 3 Pterocarps from *Derris* species

Compound	Extract	Biological	Year [Ref.]
[Source]		activity	
3-Hydroxy-8,9-	EtOH	Exhibited moderate insecticidal	2012 [11]
methylenedioxypterocarp-6a-ene (74) [D. elliptica]		activity against larvae	
H ₃ CO O O O O O O O O O O O O O O O O O O	EtOH	-	2012 [11]

Table 4 Pterocarpans from *Derris* species

Compound	Extract	Biological	Year [Ref.]
[Source]		activity	
HOOL			
HOOO	CH ₂ Cl ₂	Antibacterial	2006 [13]
Maackiain		activity	
(76)			
[D. indica]			
HO O			
H	CH_2Cl_2	-	2006 [13]
H O OCH3	2 2		
Medicarpin			
(77)			
[D. indica]			
HO			
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			
0—__0	EtOH	-	2012 [11]
7-Hydroxy-4',5'-			
methylenedioxypterocarpan			
(78)			
[D. elliptica]			

Table 5 Flavones from *Derris* species

Compound	Extract	Biological	Year [Ref.]
[Source]		activity	
		<u> </u>	
HO OH O Apigenin (79) [D. elliptica]	EtOH	Exhibited moderate insecticidal activity against larvae	2012 [11]
но он он	EtOH	-	2012 [11]
Luteolin			
(80) [D. elliptica]			
HO OH OH	EtOH	-	2012 [11]
Apigenin 7- <i>O</i> -β-D-glucoside (81) [D. elliptica]			

Table 5 (continued)

Compound	Extract	Biological	Year [Ref.]
[Source]		activity	
OAC OOO OOO OOO OOO	CH ₂ Cl ₂	Antibacterial activity	2006 [13]
3-Methoxy-(3",4"-dihydro-3",4"-			
diacetoxy)-2",2"-			
dimethylpyrano-(7,8:5",6")-Flavone (82) [D. indica]			
Karanjin (83) [D. indica]	CH ₂ Cl ₂ ^a EtOAc ^b MeOH ^c	Inhibit BSA- methylglyoxal antiglycation model ^b anticancer activity ^c	2006 [13] ^a 2014 [14] ^c 2014 [15] ^b
Lacheolatin B (84)	CH ₂ Cl ₂ ^a EtOAc ^b	Antibacterial activity ^a	2006 [13] ^a 2014 [14] ^b
[D. indica]			

Compound	Extract	Biological	Year [Ref.]
[Source]		activity	
Pongachromene (85) [D. indica]	CH ₂ Cl ₂	-	2006 [13]
H ₃ CO OCH ₃ 3,7-Dimethoxyflavone (86) [D. elliptica]	CH ₂ Cl ₂	Antibacterial activity	2006 [13]
Pachycarin D (87) [D. indica]	CH ₂ Cl ₂	-	2006 [13]

Table 5 (continued)

Compound	Extract	Biological	Year [Ref.]
[Source]		activity	
OCH ₃	CH ₂ Cl ₂	Antibacterial activity	2006 [13]
Karanjachromene			
(88)			
[D. indica]			
Pinnatin (89) [D. indica]	CH ₂ Cl ₂	Antibacterial activity	2006 [13]
2'-Methoxy-4',5'- methylenedioxyfurano [7,8:4",5"]-	CH ₂ Cl ₂	-	2006 [13]
flavone			
(90)			
[D. indica]			

Table 5 (continued)

Compound	Extract	Biological	Year [Ref.]
[Source]		activity	
H ₃ CO H ₃ CO O O O O O O O O O O O O	CH ₂ Cl ₂	Antibacterial activity	2006 [13]
HO OH OOH OH	МеОН	Anticancer activity Anti-inflammation	2014 [12]
(92)		Antioxidant	
[D. brevipes]		activity	
H_3 CO O	МеОН	Anticancer	2014 [14]
$[D.\ indica]$			

Table 5 (continued)

Compound	Extract	Biological	Year [Ref.]
[Source]		activity	
Lanceolatin B (94) [D. indica]	МеОН	Anticancer activity	2014 [14]
	EtOAc ^a	Anticancer	2014 [14] ^b
O O OCH ₃	MeOH ^b	activity ^b	2014 [15] ^a
Pongaflavone (95) [D. indica]			
	EtOAc ^a MeOH ^b	Anticancer activity ^b	2014 [14] ^b 2014 [15] ^a
Pongaglabrone			
(96)			
[D. indica]			

Table 5 (continued)

 $[D.\ indica]$

Compound	Extract	Biological	Year [Ref.]
[Source]		activity	
осн₃			
	МеОН	Anticancer	2014 [14]
	1,10,011	activity	2011[11]
8-Methoxyfurano		uovi vity	
(6,7:4",5")-flavone			
(97)			
[D. indica]			
H ₃ CO	МеОН	Anticancer activity	2014 [14]
Kanjone			
(98) [D. indica]			
H ₃ CO OCH ₃ OCH ₃	EtOAc	-	2014 [15]
Fisetin tetramethyl ether (99)			

Table 5 (continued)

Compound	Extract	Biological	Year [Ref.]
[Source]		activity	
OH OH OH OH OCH ₃ Derrisin B (100) [D. indica]	EtOAc	Inhibit BSA— methylglyoxal antiglycation model	2014 [15]
OH OCH ₃	EtOAc	-	2014 [15]
Pongachromene (101) [D. indica]			
H ₃ CO OCH ₃	CH ₂ Cl ₂ ^a EtOAc ^b	Antibacterial activity ^a	2006 [13] ^a 2014 [15] ^b
Desmethoxykanugin			
(102)			
[D. indica]			

Table 5 (continued)

Compound	Extract	Biological	Year [Ref.]
[Source]		activity	
Pongapin (103) [D. indica]	EtOAc	Inhibit BSA— methylglyoxal antiglycation model	2014 [15]
H ₃ CO O	EtOAc	-	2014 [15]
Pongaglabol methyl ether (104) [D. indica]			
	EtOAc	Inhibit BSA- methylglyoxal	2014 [15]
Lacneolatin B (105) [D. indica]		antiglycation model	

Compound	Extract	Biological	Year [Ref.]
[Source]		activity	
H ₃ CO O 5-Methoxy-3",4"-	EtOAc	-	2014 [15]
methylenedioxy(8,7,4",5")-flavone (106) [D. indica]			
H ₃ CO OCH ₃ OCH ₃ 3,7-Dimethoxy-2-(4-methoxy	EtOAc	-	2014 [15]
phenyl)flavone (107)			
[D. indica]			

Table 6 Flavanonols from *Derris* species

Compound	Extract	Biological	Year [Ref.]
[Source]		activity	
	MeOH	Anticancer	2014 [14]
		activity	
H₃CO O			
(2R,3R)-3-Hydroxy-5-methoxy-			
2",2"-dimethylpyrano			
[7,8:5",6"]-flavanone			
(108)			
[D. indica]	EtOAc		2014 [15]
Derrisin A (109) [D. indica]			

Table 7 Flavanones from *Derris* species

Compound	Extract	Biological	Year [Ref.]
[Source]		activity	
H_3CO O O O O O O O O O	МеОН	Anticancer activity	2014 [14]
OAC OAC OAC OAC OAC OAC OAC OAC	Hexane	Anticancer activity	2014 [15]
[D. indica]			

Table 8 Isoflavones from *Derris* species

Compound	Extract	Biological	Year [Ref.]
[Source]		activity	
HO O O OH Genistein (112) [D. elliptica]	EtOH	-	2012 [11]
Prunetin (113) [D. elliptica]	EtOH	Exhibited moderate insecticidal activity against larvae	2012 [11]
Formononetin (114) [D. elliptica]	EtOH	Exhibited moderate insecticidal activity against larvae	2012 [11]

Table 8 (continued)

Compound	Extract	Biological	Year [Ref.]
[Source]		activity	
OCH ₃ OCH ₃	CH ₂ Cl ₂	-	2006 [13]
8,4'-Dimethoxy-7- <i>O</i> -γ, γ-			
dimethylallylisoflavone			
(115)			
[D. indica]			

Table 9 Chalcones from *Derris* species

Compound	Extract	Biological	Year [Ref.]
[Source]		activity	
HO OH O OH 3 2',4'-Dihydroxy-4-methoxy-3'- prenyl chalcone (116) [D. brevipes]	МеОН	Anti- inflammation Antioxidant activities	2014 [12]
Derrischalcone (117) [D. indica]	Hexane	Anticancer	2014 [14]
Iunicatachalcone (118) [D. indica]	МеОН	Anticancer activity	2014 [14]

Compound	Extract	Biological	Year [Ref.]
[Source]		activity	
OH O	МеОН	Anticancer activity	2014 [14]
Obovatachalcone			
(119)			
[D. indica]			
Glabrachromene (120)	МеОН	Anticancer activity	2014 [14]
[D. indica]			
Ovalichalcone (121) [D. indica]	МеОН	Anticancer activity	2014 [14]

Table 9 (continued)

Compound	Extract	Biological	Year [Ref.]
[Source]		activity	
H ₃ CO O OH	МеОН	Anticancer activity	2014 [14]
Pongamol (122)			
$[D.\ indica]$			

Table 10 Tubaic acid from *Derris* species

Compound	Extract	Biological	Year [Ref.]
[Source]		activity	
Elliptoic acid (123) [D. elliptica]	EtOH	-	2009 [10]

CHAPTER 2

EXPERIMENTAL

General Techniques

1. Solvent

1.1 The organic solvents were commercial grade and were distilled prior to use for extraction, as eluent for thin layer and column chromatography. Analytical grade solvents were used for the synthesis.

2. Chromatography

2.1 Thin Layer Chromatography (TLC)

Techniques: One way, ascending.

Adsorbent: Silica gel 60 F_{254} pre-coated on aluminum plate (E. Merck) size 1 x 5 cm, 2 x 5 cm and 3 x 5 cm.

Detection on chromatography plate:

- 2.1.1 Ultraviolet light at 254 nm. The compound which contains unsaturated bonds especially conjugated system is visible as quenching spot under UV light at 254 nm.
- 2.1.2 Developing reagent: Anisaldehyde reagent consisted of *p*-methoxybenzaldehyde (3 ml), concentrated sulfuric acid (2 ml), water (2 ml) and absolute ethanol (90 ml). The spots of organic compounds give specific colors with this reagent after heating at 90-110 °C for 1-4 minutes.

2.2 Column Chromatography (CC)

2.2.1 Column Chromatography (CC)

Adsorbent: Unless indicated otherwise, silica gel with particle size less than 60-200 μ m (SiliCycle Silica*Flash* G 60) was used throughout the experiments.

Packing method: Slurry packing.

Sample loading: The sample was dissolved in a small amount of suitable organic solvent, mixed with a small quantity of silica gel 60 with particle size 60-200 μ m, air dried and added gently onto the top of column.

Elution: After loading of the sample, the column was eluted with suitable solvent system using isocratic or gradient technique.

2.2.2 Gel Filtration chromatography

Adsorbent: Sephadex LH-20 (Pharmacia)

Packing method: Gel filter was suspended in the eluent and left standing to swell for 24 hours prior to use. It was poured into the column and allowed to set tightly.

Sample loading: The sample was dissolved in a small amount of suitable organic solvent and added gently onto the top of column.

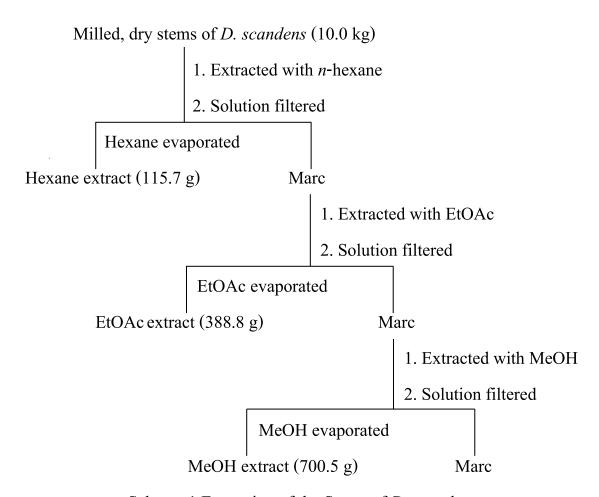
Elution: After loading of the sample, the column was eluted with suitable solvent system.

3. Physical Constant

Optical rotations were obtained using a JASCO-1020 polarimeter.

Melting points were determined on an Electrothermal melting point apparatus and are uncorrected. The temperature was given in degree Celsius.

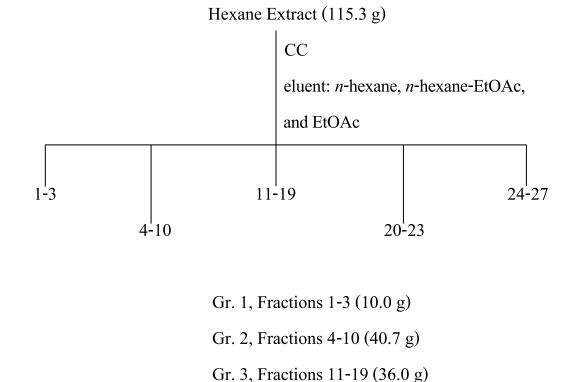
4. Spectroscopy


- 4.1 Infrared (IR) Spectra. IR spectra were recorded on a Perkin-Elmer FT-IR 400 Spectrometer. Spectra of solid sample were recorded as ATR.
- 4.2 Nuclear Magnetic Resonance (NMR) Spectra. 1D and 2D NMR spectra were measured with a Bruker AVANCE 400 NMR spectrometer, operating at 400 MHz (¹H) and 100 MHz (¹³C).
- 4.3 Mass Spectra. Electrospray ionization mass spectra (ESIMS) were determined on a Finnigan LC-Q mass spectrometer. The high resolution mass spectra were obtained using a Bruker micrOTOF-II mass spectrometer.

Source of Plant Materials

The dry stems of *Derris scandens* used in this study were purchased from Bansamunpaiosot herbal store, Bangkok in 2015. A voucher specimen (Apichart Suksamrarn No. 086) is deposited at the Faculty of Science, Ramkhamhaeng University.

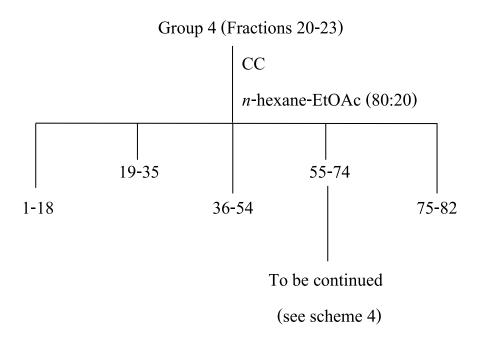
Extraction and Isolation of the Stems of *Derris scandens*


The dried stems of *D. scandens* (10.0 kg) were milled and extracted successively with *n*-hexane, EtOAc and MeOH for five times of each solvent at room temperature. The filtered solution of each extraction was evaporated to dryness under reduced pressure at temperature 40-45 °C to give the hexane extract (dark brown gum, 115.7 g), the EtOAc extract (dark brown gum, 388.8 g) and the MeOH extract (dark brown gum, 700.5 g). The extraction sequence is shown in Scheme 1.

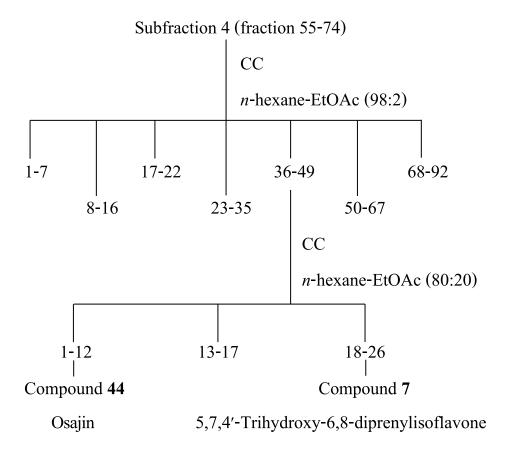
Scheme 1 Extraction of the Stems of *D. scandens*

Hexane Extract

The hexane extract (115.3 g) was fractionated by column chromatography using a gradient solvent system of *n*-hexane, *n*-hexane-EtOAc and EtOAc with increasing amount of the more polar solvent. The elutes were examined by TLC and 5 groups of eluting fractions were obtained (see Scheme 2).


Scheme 2 Fractionation of the Hexane Extract of *D. scandens*

Gr. 4, Fractions 20-23 (7.0 g)


Gr. 5, Fractions 24-27 (22.0 g)

Group 4 (Fractions 20-23)

This combined fraction was chromatographed over silica gel eluting with *n*-hexane-EtOAc (80:20) and EtOAc to give 5 subfractions as shown in Scheme 3. Subfraction 4 (fractions 55-74) was chromatographed using *n*-hexane-EtOAc (98:2) to afford 7 subfractions. Subfraction 5 (fractions 36-49) was chromatographed using *n*-hexane-EtOAc (80:10) to yield osajin (44) as yellow amorphous solid (221.6 mg) and 5,7,4'-trihydroxy-6,8 diprenylisoflavone (7) as yellow amorphous solid (6.7 mg) as shown in Scheme 4.

Scheme 3 Fractionation of Group 4 (Fractions 20-23) of the Hexane Extract

Scheme 4 Fractionation of Subfraction 4 (Fractions 55-74) of Scheme 3

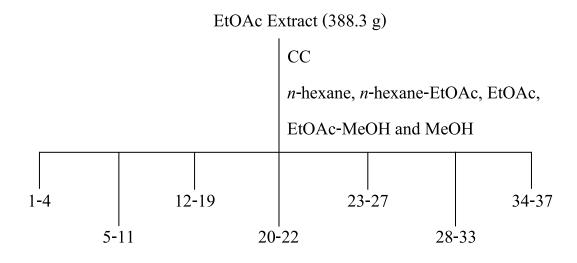
Osajin (44)

IR: V_{max} 3414, 2973, 1642, 1617, 1572, 1513, 1432, 1358, 1238, 1169, 1074, 873 cm⁻¹.

¹H- and ¹³C-NMR data are given in Table 17.

ESIMS (-ve): *m/z* (% rel. intensity) 403 [M–H] (100).

5,7,4'-Trihydroxy-6,8-diprenylisoflavone (7)


IR: V_{max} 3347, 2919, 1643, 1611, 1557, 1514, 1429, 1334, 1267, 1202, 1171, 1078, 1065, 946, 833 cm⁻¹.

¹H- and ¹³C-NMR data are given in Table 12.

ESIMS (-ve): *m/z* (% rel. intensity) 405 [M–H] (100).

EtOAc Extract

The EtOAc extract (388.3 g) was fractionated by column chromatography using a gradient solvent system of *n*-hexane, *n*-hexane-EtOAc, EtOAc, EtOAc-MeOH and MeOH with increasing amount of the more polar solvent. The elutes were examined by TLC and 7 combined fractions were obtained (see Scheme 5).

Gr. 1, Fractions 1-4 (19.0 g)

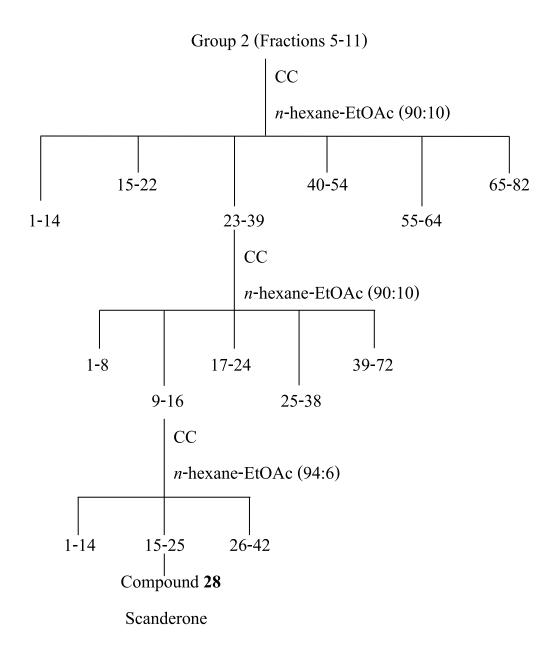
Gr. 2, Fractions 5-11 (30.0 g)

Gr. 3, Fractions 12-19 (157.6 g)

Gr. 4, Fractions 20-22 (24.2 g)

Gr. 5, Fractions 23-27 (30.8 g)

Gr. 6, Fractions 28-33 (84.2 g)


Gr. 7, Fractions 34-37 (43.0 g)

Scheme 5 Fractionation of the EtOAc Extract of *D. scandens*

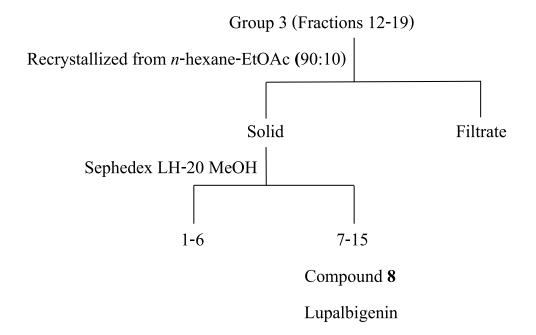
Group 2 (Fractions 5-11)

This combined fraction was chromatographed over silica gel eluting with *n*-hexane-EtOAc (90:10) to give 6 subfractions. Subfraction 3 (fractions 23-39) was chromatographed using *n*-hexane-EtOAc (90:10) to afford 5 subfractions. Subfraction 2 (fractions 9-16) was chromatographed using *n*-hexane-EtOAc (94:6) as eluent to give 3 subfractions. Subfraction 2 was

identified as scanderone (28) as yellow amorphous solid (225.7 mg) as shown in Scheme 6.

Scheme 6 Fractionation of Group 2 (Fractions 5-11) of the EtOAc Extract

Scanderone (28)


IR: V_{max} 3333, 2974, 1649, 1617, 1570, 1456, 1270, 1248, 1213, 1059, 819 cm⁻¹.

¹H- and ¹³C-NMR data are given in Table 15.

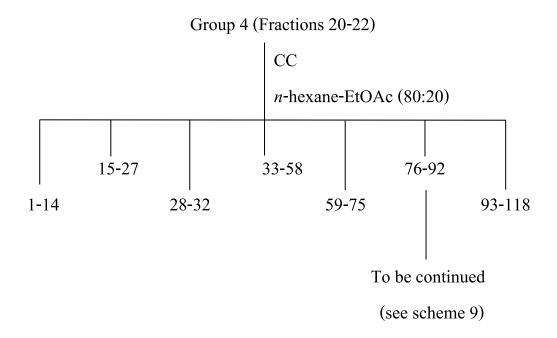
ESIMS (-ve): m/z (% rel. intensity) 403 [M–H] (100).

Group 3 (Fractions 12-19)

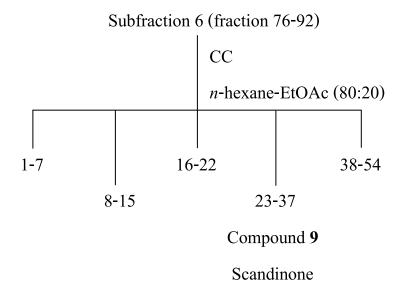
This combined fraction was recrystallized from *n*-hexane-EtOAc (90:10) to give a solid containing a mixture of compounds, which was separated on Sephadex LH-20 column eluting with MeOH to give 2 subfractions. Subfraction 2 was identified as lupalbigenin (8) as pale yellow amorphous solid (12.7 g) as shown in Scheme 7.

Scheme 7 Fractionation of Group 3 (Fractions 12-19) of the EtOAc Extract

Lupalbigenin (8)


IR: V_{max} 3244, 2924, 1652, 1618, 1559, 1502, 1462, 1427, 1304, 1271, 1118, 1174, 1069, 823 cm⁻¹.

¹H- and ¹³C-NMR data are given in Table 13.


ESIMS (-ve): *m/z* (% rel. intensity) 405 [M–H] (100).

Group 4 (Fractions 20-22)

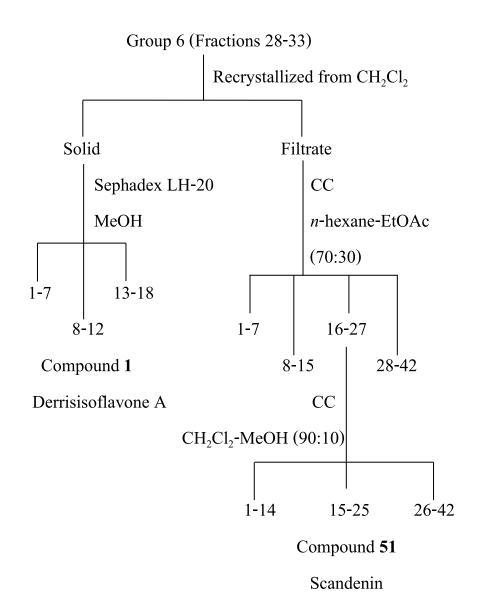
This combined fraction was chromatographed over silica gel eluting with n-hexane-EtOAc (80:20) to give 7 subfractions as shown in Scheme 8. Subfraction 6 (fractions 76-92) was chromatographed using n-hexane-EtOAc (80:20) to give 5 subfractions. Subfraction 4 was identified as scandinone (9) as yellow amorphous (101.7 mg) (see Scheme 9).

Scheme 8 Fractionation of Group 4 (Fractions 20-22) of the EtOAc Extract

Scheme 9 Fractionation of Subfraction 6 (Fractions 76-79) of Scheme 8

Scandinone (9)

IR: V_{max} 3369, 2967, 1627, 1606, 1582, 1571, 1419, 1377, 1248, 1217, 1132, 1074, 833 cm⁻¹.


¹H- and ¹³C-NMR data are given in Table 14.

ESIMS (+ve): *m/z* (% rel. intensity) 859 [2M+Na]⁺ (70).

Group 6 (Fractions 28-33)

This combined fraction was recrystallized from CH₂Cl₂ to give a solid containing a mixture of compounds, which was separated on Sephadex LH-20 column eluting with MeOH to give 3 subfractions. Subfraction 3 was identified as derrisisoflavone A (1) as yellow amorphous solid (5.7 g). The filtrate was chromatographed over silica gel eluting with *n*-hexane-EtOAc (70:30) to give 4 subfractions. Subfraction 3 was chromatographed using 10% MeOH in CH₂Cl₂

to give 3 subfractions. Subfraction 3 was identified as scandenin (51) as white amorphous solid (3.2 mg) (see Scheme 10).

Scheme 10 Fractionation of Group 6 (Fractions 28-33) of the EtOAc Extract

Derrisisoflavone A (1)

IR: V_{max} 3162, 2937, 1630, 1607, 1583, 1514, 1415, 1374, 1259, 1218, 1171, 1070, 992, 845 cm⁻¹.

¹H- and ¹³C-NMR data are given in Table 11.

ESIMS (-ve): *m/z* (% rel. intensity) 419 [M–H] (100).

Scandenin (51)

IR: V_{max} 3216, 2922, 1679, 1614, 1588, 1517, 1424, 1375, 1274, 1220, 1173, 1115, 998, 832 cm⁻¹.

¹H- and ¹³C-NMR data are given in Table 18.

ESIMS (-ve): *m/z* (% rel. intensity) 433 [M–H] (100).

Structural Modification

Acetylation of Derrisisofleavone A (1)

$$\begin{array}{c} \text{HO} \\ \text{H}_{3}\text{CO} \\ \text{OH} \\ \end{array} \begin{array}{c} \text{Ac}_{2}\text{O, Pyridine} \\ \text{CH}_{2}\text{CI}_{2} \\ \end{array} \begin{array}{c} \text{R}_{1}\text{O} \\ \text{H}_{3}\text{CO} \\ \end{array} \begin{array}{c} \text{OR}_{2} \\ \text{OR}_{2} \\ \end{array} \\ \text{124; } R_{1} = \text{Ac}, R_{2} = \text{H} \\ \text{125; } R_{1} = \text{H}, R_{2} = \text{Ac} \\ \text{126; } R_{1} = R_{2} = \text{Ac} \\ \end{array}$$

Derrisisoflavone A (1) (100.0 mg, 0.24 mmol) was dissolved in CH₂Cl₂ (12.5 ml) and pyridine (5 ml) and acetic anhydride (46 μl) was then added. The mixture was stirred at room temperature for 4 h. Water was added and the mixture was extracted with CH₂Cl₂ (3x75 ml). The combined organic phase was washed with water, dried over anhydrous Na₂SO₄ and the solvent was removed under vacuum. The crude mixture was purified by silica column chromatography eluting with *n*-hexane-EtOAc (85:15) to give the acetates 124 (15.9 mg, 14%), 125 (4.0 mg, 3%) and 126 (52.7 mg, 44%).

Derrisisoflavone A 7-O-acetate (124)

IR: V_{max} 3176, 2923, 1767, 1625, 1610, 1584, 1515, 1415, 1363, 1268, 1192, 1174, 1054, 832 cm⁻¹.

¹H- and ¹³C-NMR data are given in Table 19.

HR-TOFMS (ESI⁺): m/z 485.1931 [M+Na]⁺ (Calcd. for $C_{28}H_{30}O_6$ +Na, 485.1935).

Derrisisoflavone A 4'-O-acetate (125)

IR: V_{max} 3319, 2926, 1760, 1633, 1585, 1506, 1417, 1369, 1265, 1195, 1166, 1066, 1063, 843 cm⁻¹.

¹H- and ¹³C-NMR data are given in Table 19.

HR-TOFMS (ESI⁺): m/z 485.1933 [M+Na]⁺ (Calcd. for $C_{28}H_{30}O_6$ +Na, 485.1935).

Derrisisoflavone A 7,4'-di-O-acetate (126)

IR: V_{max} 2975, 2917, 1766, 1754, 1644, 1586, 1509, 1447, 1415, 1365, 1269, 1193, 1169, 1114, 1072, 1063, 857 cm⁻¹.

¹H- and ¹³C-NMR data are given in Table 20.

HR-TOFMS (ESI⁺): m/z 527.2039 [M+Na]⁺ (Calcd. for C₃₀H₃₂O₇+Na, 527.2040).

Acetylation of Lupalbigenin (8)

$$\begin{array}{c} \text{HO} \\ \text{OH} \\$$

Lupalbigenin (8) (100 mg, 0.25 mmol) was dissolved in CH_2Cl_2 (25 ml), pyridine (0.1 ml) and acetic anhydride (24 μ l) was added. The mixture was stirred at room temperature for 4 h. Water was added and the mixture was extracted with CH_2Cl_2 (3x75 ml). The combined organic phase was washed with water, dried over anhydrous Na_2SO_4 and the solvent was removed under vacuum. The crude mixture was purified by silica column chromatography eluting with *n*-hexane-EtOAc (75:15) to give the acetates **127** (35.9 mg, 33%), **128** (10.9 mg, 10%) and **129** (68.5 mg, 57%).

Lupalbigenin 7-*O*-acetate (127)

IR: V_{max} 3488, 2914, 1734, 1621, 1592, 1507, 1440, 1266, 1206, 1170, 1058, 837 cm⁻¹.

¹H- and ¹³C-NMR data are given in Table 21.

HR-TOFMS (ESI⁺): m/z 471.1776 [M+Na]⁺ (Calcd. for C₂₇H₂₈O₆+Na, 471.1778).

Lupalbigenin 4'-O-acetate (128)

IR: V_{max} 3193, 2917, 1733, 1642, 1618, 1494, 1433, 1294, 1225, 1167, 1100, 1057, 810 cm⁻¹.

¹H- and ¹³C-NMR data are given in Table 21.

HR-TOFMS (ESI⁺): m/z 471.1767 [M+Na]⁺ (Calcd. for C₂₇H₂₈O₆+Na, 471.1778).

Lupalbigenin 7,4'-di-O-acetate (129)

IR: V_{max} 3081, 2912, 1748, 1626, 1593, 1439, 1367, 1205, 1165, 1120, 1085, 1059, 904, 841 cm⁻¹.

¹H- and ¹³C-NMR data are given in Table 22.

HR-TOFMS (ESI⁺): m/z 513.1879 [M+Na]⁺ (Calcd. for $C_{29}H_{30}O_7$ +Na, 513.1884).

Acetylation of Osajin (44)

$$\begin{array}{c|c} Ac_2O, Pyridine \\ \hline OH O \\ OH \end{array}$$

$$\begin{array}{c} Ac_2O, Pyridine \\ CH_2CI_2 \\ \hline OH O \\ \end{array}$$

$$(130)$$

Osajin (44) (25 mg, 0.06 mmol) was dissolved in CH₂Cl₂ (7.5 ml), pyridine (0.5 ml) and acetic anhydride (10 µl) was added. The mixture was stirred at room temperature for 24 h. Water was added and the mixture was extracted with CH₂Cl₂ (3x75 ml). The combined organic phase was washed with water, dried over anhydrous Na₂SO₄ and the solvent was removed under vacuum. The crude mixture was purified by Sephadex LH-20 eluting with 30% CH₂Cl₂ in MeOH to give the acetate 130 (25.4 mg, 95%).

Osajin 4'-0-acetate (130)

IR: V_{max} 3341, 2981, 2924, 1750, 1651, 1615, 1573, 1508, 1433, 1360, 1241, 1208, 1169, 1116, 1073, 843 cm⁻¹.

¹H- and ¹³C-NMR data are given in Table 23.

HR-TOFMS (ESI⁺): m/z 469.1633 [M+Na]⁺ (Calcd. for $C_{27}H_{26}O_6$ +Na, 469.1622).

Methylation of Derrisisoflavone A (1)

$$\begin{array}{c} \text{CH}_{3}\text{I}, \ \text{K}_{2}\text{CO}_{3} \\ \text{Acetone} \\ \end{array}$$

Derrisisoflavone A (1) (100 mg, 0.24 mmol) was dissolved in acetone (20 ml) and methyl iodide (1 ml) was added. The mixture was stirred at 40 °C for 4 h. Water was added and the mixture was extracted with CH₂Cl₂(3x75 ml). The combined organic phase was washed with water, dried over anhydrous Na₂SO₄ and the solvent was removed under vacuum. The crude mixture was purified by silica column chromatography eluting with *n*-hexane-EtOAc (80:10) to give the methyl ethers 131 (35.6 mg, 34%), 132 (18.4 mg, 18%) and 133 (20.6 mg, 19%).

Derrissioflavone A 7-O-methyl ether (131)

IR: V_{max} 3362, 2925, 1634, 1608, 1587, 1516, 1420, 1375, 1260, 1215, 1174, 1122, 1070, 993, 833 cm⁻¹.

¹H- and ¹³C-NMR data are given in Table 24.

HR-TOFMS (ESI⁺): m/z 457.1959 [M+Na]⁺ (Calcd. for $C_{27}H_{30}O_5$ +Na, 457.1985).

Derrissioflavone A 4'-O-methyl ether (132)

IR: V_{max} 3344, 2922, 1633, 1607, 1587, 1512, 1464, 1418, 1374, 1291, 1246, 1220, 1177, 1075, 1031, 832 cm⁻¹.

¹H- and ¹³C-NMR data are given in Table 24.

HR-TOFMS (ESI⁺): m/z 457.1961 [M+Na]⁺ (Calcd. for C₂₇H₃₀O₅+Na, 457.1985).

Derrissioflavone A 7,4'-di-O-methyl ether (133)

 $IR: V_{max} 2938, 1638, 1608, 1582, 1512, 1420, 1248, 1220, 1177, 1074, \\ 1029, 832 \text{ cm}^{-1}.$

¹H- and ¹³C-NMR data are given in Table 25.

HR-TOFMS (ESI⁺): m/z 471.2113 [M+Na]⁺ (Calcd. for C₂₈H₃₂O₅+Na, 471.2142).

Methylation of Lupalbigenin (8)

(8)
$$\begin{array}{c} \text{CH}_{3}\text{I}, \ \text{K}_{2}\text{CO}_{3} \\ \text{MeOH} \end{array}$$

$$(134\text{-}135)$$

$$134; \ \text{R}_{1} = \text{CH}_{3}, \ \text{R}_{2} = \text{H}$$

$$135; \ \text{R}_{1} = \text{R}_{2} = \text{CH}_{3}$$

Lupalbigenin (8) (100 mg, 0.24 mmol) was dissolved in methanol (3 ml) and methyl iodide (5 ml) was added. The mixture was stirred at 40° C for 4 h. Water was added and the mixture was extracted with CH_2Cl_2 (3x75 ml). The combined organic phase was washed with water, dried over anhydrous Na_2SO_4 and the solvent was removed under vacuum. The crude mixture was purified by silica column chromatography eluting with *n*-hexane-EtOAc (93:7) to give the methyl ethers **134** (71.6 mg, 71%) and **135** (26.7 mg, 26%).

Lupalbigenin 7-0-methyl ether (134)

IR: V_{max} 3326, 2921, 1649, 1613, 1573, 1491, 1447, 1265, 1219, 1171, 1116, 1057, 818 cm⁻¹.

¹H- and ¹³C-NMR data are given in Table 26.

HR-TOFMS (ESI⁺): m/z 443.1808 [M+Na]⁺ (Calcd. for $C_{26}H_{28}O_5$ +Na, 443.1829).

Lupalbigenin 7,4'-di-O-methyl ether (135)

IR: V_{max} 3347, 2968, 2919, 1644, 1608, 1568, 1501, 1449, 1264, 1222, 1122, 1078, 1057, 819 cm⁻¹

¹H- and ¹³C-NMR data are given in Table 26.

HR-TOFMS (ESI⁺): m/z 457.1983 [M+Na]⁺ (Calcd. for $C_{27}H_{30}O_5$ +Na, 457.1985).

Methylation of Osajin (44)

Osajin (44) (30 mg, 0.07 mmol) was dissolved in acetone (15 ml) and methyl iodide (1 ml) was added. The mixture was stirred at 40 °C for 24 h. Water was added and the mixture was extracted with CH₂Cl₂ (3x75 ml). The combined organic phase was washed with water, dried over anhydrous Na₂SO₄ and the solvent was removed under vacuum. The crude mixture was purified by silica column chromatography eluting with *n*-hexane-EtOAc (96:4) to give the methyl ether 43 (26.2 mg, 84%).

4'-O-Methylosajin (43)

IR: V_{max} 3321, 2979, 2911, 1650, 1614, 1567, 1510, 1434, 1243, 1206, 1175, 1147, 1119, 1077, 830 cm⁻¹

¹H- and ¹³C-NMR data are given in Table 16.

HR-TOFMS (ESI⁺): m/z 441.1645 [M+Na]⁺ (Calcd. for $C_{26}H_{26}O_5$ +Na, 441.1672).

Catalytic Hydrogenation of Derrisisoflavone A (1)

Derrisisoflavone A (1) (100 mg, 0.24 mmol) in ethanol (2 ml) was hydrogenated at atmospheric pressure, with 10% Pd-C as a catalyst. The reaction was filtered through a short Celite column and the residue was washed with MeOH. The filtered solution was evaporated to dryness. The crude mixture was purified by silica column chromatography eluting with n-

hexane-EtOAc (85:15) to give the tetrahydro analogue **136** (48.9 mg, 49%) and hexahydro analogue **137** (45.6 mg, 45%).

Tetrahydroderrisisoflavone A (136)

IR: V_{max} 3173, 2953, 1631, 1607, 1586, 1516, 1466, 1416, 1220, 1187, 1137, 1077, 845 cm⁻¹.

¹H- and ¹³C-NMR data are given in Table 27.

HR-TOFMS (ESI⁺): m/z 447.2145 [M+Na]⁺ (Calcd. for $C_{26}H_{32}O_5$ +Na, 447.2142).

Hexahydroderrisisoflavone A (137)

IR: V_{max} 3339, 2955, 2869, 1581, 1517, 1467, 1385, 1209, 1159, 1116, 1001, 831 cm⁻¹.

¹H- and ¹³C-NMR data are given in Table 27.

HR-TOFMS (ESI⁺): m/z 449.2294 [M+Na]⁺ (Calcd. for C₂₆H₃₄O₅+Na, 449.2298).

Catalytic Hydrogenation of Lupalbigenin (8)

Lupalbigenin (8) (100 mg, 0.24 mmol) in ethanol (2ml) was hydrogenated at atmospheric pressure, with 10% Pd-C as a catalyst. The reaction was filtered through a short Celite column and the residue was washed with MeOH. The filtered solution was evaporated to dryness. The crude mixture was purified by silica column chromatography eluting *n*-hexane-EtOAc (90:10) to give the dihydro analogue **138** (8.8 mg, 9%), tetrahydro analogue **139** (46.3 mg, 47%) and hexahydro analogue **140** (24.8 mg, 26%).

Dihydrolupalbigenin (138)

IR: V_{max} 3263, 2963, 2915, 1651, 1616, 1552, 1506, 1466, 1420, 1231, 1219, 1173, 1127, 1055, 812 cm⁻¹.

¹H- and ¹³C-NMR data are given in Table 28.

HR-TOFMS (ESI⁺): m/z 431.1829 [M+Na]⁺ (Calcd. for C₃₂H₃₆O₇+Na, 431.1829).

Tetrahydrolupalbigenin (139)

IR: V_{max} 3261, 2954, 2923, 1651, 1620, 1609, 1560, 1466, 1422, 1350, 1229, 1124, 1053, 817 cm⁻¹.

¹H- and ¹³C-NMR data are given in Table 28.

HR-TOFMS (ESI⁺): m/z 433.1947 [M+Na]⁺ (Calcd. for $C_{25}H_{30}O_5$ +Na, 433.1985).

Hexahydrolupalbigenin (140)

IR: V_{max} 3254, 2958, 2913, 1616, 1551, 1504, 1466, 1420, 1358, 1275, 1254, 1173, 1127, 1055, 812 cm⁻¹.

¹H- and ¹³C-NMR data are given in Table 29.

HR-TOFMS (ESI⁺): m/z 435.2145 [M+Na]⁺ (Calcd. for $C_{25}H_{32}O_5$ +Na, 435.2142).

Catalytic Hydrogenation of Osajin (44)

Osajin (44) (50 mg, 0.12 mmol) in ethanol (2 ml) was hydrogenated at atmospheric pressure, with 10% Pd-C as a catalyst. The reaction was filtered through a short Celite column and the residue was washed with MeOH. The filtered solution was evaporated to dryness. The crude mixture was purified by sephadex-LH20 eluting with MeOH to give the tetrahydro analogue 141 (23.1 mg, 46%) and hexahydro analogue 142 (21.0 mg, 41%).

Tetrahydroosajin (141)

IR: V_{max} 3375, 2936, 1643, 1611, 1569, 1515, 1428, 1367, 1284, 1207, 1160, 1114, 1070, 811 cm⁻¹.

¹H- and ¹³C-NMR data are given in Table 30.

HR-TOFMS (ESI⁺): m/z 431.1798 [M+Na]⁺ (Calcd. for C₂₅H₂₈O₅+Na, 431.1829).

Hexahydroosajin (142)

IR: V_{max} 3431, 2942, 1604, 1589, 1519, 1435, 1384, 1267, 1202, 1169, 1120, 833 cm⁻¹.

¹H- and ¹³C-NMR data are given in Table 30.

HR-TOFMS (ESI⁺): m/z 433.1983 [M+Na]⁺ (Calcd. for $C_{25}H_{30}O_5$ +Na, 433.1985).

Catalytic Hydrogenation of Lupalbigenin 7-0-methyl ether (134)

Lupalbigenin 7-*O*-methyl ether (**134**) (50 mg, 0.12 mmol) was dissolved in ethanol (2 ml) was hydrogenated at atmospheric pressure, with 10% Pd-C as a catalyst. The reaction was filtered through a short celite column and the residue was washed with MeOH. The filtered solution was evaporated to dryness. The crude mixture was purified by silica column chromatography eluting *n*-hexane-EtOAc (90:10) to give the tetrahydro analogue **143** (15 mg, 29%).

Tetrahydrolupalbigenin 7-O-methyl ether (143)

IR: V_{max} 3382, 2953, 1649, 1614, 1572, 1506, 1448, 1361, 1272, 1222, 1141, 1069, 1054, 819 cm⁻¹.

¹H- and ¹³C-NMR data are given in Table 31.

HR-TOFMS (ESI⁺): m/z 447.2138 [M+Na]⁺ (Calcd. For $C_{26}H_{32}O_5$ +Na, 447.2141).

Esterification of Derrisisofleavone A (1) with Propionic anhydride

Propionic anhydride Pyridine,
$$CH_2CI_2$$
 H_3CO OR_2 $(144-146)$ $(144-146)$ $144;$ $R_1 = COCH_2CH_3,$ $R_2 = H$ $145;$ $R_1 = H,$ $R_2 = COCH_2CH_3$ $146;$ $R_1 = R_2 = COCH_2CH_3$

Derrisisoflavone A (1) (100 mg, 0.24 mmol) was dissolved in dichloromethane (12.5 ml) and pyridine (5 ml) and propionic anhydride (46 µl) was then added. The mixture was stirred at room temperature for 4 h. Water was added and the mixture was extracted with CH₂Cl₂. The combined organic phase was washed with water, dried over anhydrous Na₂SO₄ and the solvent was removed under vacuum. The crude mixture was purified by silica

column chromatography eluting with 10% EtOAc in *n*-hexane to give the propanoates **144** (15.9 mg, 14%), **145** (4.0 mg, 3%) and **146** (52.7 mg, 44%).

Derrisisoflavone A 7-O-propanoate (144)

IR: V_{max} 3350, 2926, 1758, 1630, 1587, 1512, 1414, 1359, 1270, 1260, 1168, 1117, 1074, 835 cm⁻¹.

¹H- and ¹³C-NMR data are given in Table 32.

HR-TOFMS (ESI⁺): m/z 499.2086 [M+Na]⁺ (Calcd. for $C_{29}H_{32}O_6$ +Na, 499.2091).

Derrisisoflavone A 4'-O-propanoate (145)

IR: V_{max} 3316, 2928, 1758, 1631, 1583, 1505, 1415, 1372, 1265, 1230, 1166, 1137, 1072, 1060, 838 cm⁻¹.

¹H- and ¹³C-NMR data are given in Table 32.

HR-TOFMS (ESI⁺): m/z 499.2090 [M+Na]⁺ (Calcd. for $C_{29}H_{32}O_6$ +Na, 499.2091).

Derrisisoflavone A 7,4'-di-O-propanoate (146)

IR: V_{max} 2925, 1766, 1746, 1644, 1588, 1418, 1355, 1262, 1217, 1172, 1118, 1073, 891 cm⁻¹.

¹H- and ¹³C-NMR data are given in Table 33.

HR-TOFMS (ESI⁺): m/z 555.2357 [M+Na]⁺ (Calcd. for $C_{32}H_{36}O_7$ +Na, 555.2353).

Nitration of Lupalbigenin (8)

Lupalbigenin (8) (100 mg, 0.24 mmol) was dissolved in methanol (1ml) and sodium nitrite (85 mg, excess) and conc. sulfuric acid (2 drops) were added. The mixture was stirred at room temperature for 2 days. Water was added and the mixture was extracted with EtOAc (3x75 ml). The combined organic phase was washed with water, dried over anhydrous Na₂SO₄ and the solvent was removed under vacuum. The crude mixture was purified by silica column chromatography eluting with *n*-hexane-EtOAc (90:10) to give the nitro analogue **147** (24.1 mg, 22%).

5'-Nitrolupalbigenin (147)

IR: V_{max} 3355, 2980, 2915, 1644, 1623, 1571, 1544, 1461, 1367, 1283, 1227, 1173, 1058, 818 cm⁻¹.

¹H- and ¹³C-NMR data are given in Table 34.

HR-TOFMS (ESI⁺): m/z 474.1485 [M+Na]⁺ (Calcd. for $C_{25}H_{25}NO_7+Na$, 474.1523).

Epoxidation of Lupalbigenin (8)

Lupalbigenin (8) (70 mg, 0.17 mmol) was dissolved in CHCl₃ (5ml) and *m*-chloroperbenzoic acid (*m*-CPBA) (830 mg, excess) were added. The mixture was stirred at room temperature for 3 days. 5% aq. NaHCO₃ was added and the mixture was extracted with EtOAc (3x75 ml). The combined organic phase was washed with water, dried over anhydrous Na₂SO₄ and the solvent was removed under vacuum. The crude mixture was subjected to column chromatography using *n*-hexane-EtOAc (70:30) as eluting solvent to give the products **148** (3.5 mg, 5%) and **149** (8.9 mg, 13%).

2"',3"'-Epoxylupalbigenin (148)

IR: V_{max} 3242, 2978, 2923, 1645, 1614, 1578, 1497, 1453, 1297, 1264, 1221, 1142, 1119, 1059, 821 cm⁻¹.

¹H- and ¹³C-NMR data are given in Table 35.

HR-TOFMS (ESI⁺): m/z 445.1618 [M+Na]⁺ (Calcd. for C₂₅H₂₆O₆+Na, 445.1622).

2", 3", 2"', 3"'-Diepoxylupalbigenin (149)

IR: V_{max} 3389, 2984, 1651, 1614, 1567, 1495, 1457, 1243, 1222, 1125, 1067, 1054, 819 cm⁻¹.

¹H- and ¹³C-NMR data are given in Table 35.

HR-TOFMS (ESI⁺): m/z 461.1575 [M+Na]⁺ (Calcd. for $C_{25}H_{26}O_7$ +Na, 461.1571).

Benzoylation of Lupalbigenin (8)

To a solution of lupalbigenin (8) (50 mg, 0.12 mmol) in pyridine (2 ml) and CH₂Cl₂(16 ml) was added benzoyl chloride (6 drops, excess). The mixture was stirred at room temperature for 4 h. Water (20 ml) was added and the mixture was extracted with EtOAc (3x75 ml). The combined organic

phase was washed with water, dried over anhydrous Na_2SO_4 and the solvent was removed under vacuum. The crude mixture was purified by silica column chromatography eluting with *n*-hexane-EtOAc (90:10) to give the benzoates **150** (6.3 mg, 7%) and **151** (39.3 mg, 52%).

Lupalbigenin 7-O-benzoate (150)

IR: V_{max} 3452, 2923, 1717, 1641, 1617, 1578, 1509, 1437, 1275, 1260, 1214, 1170, 1059, 826 cm⁻¹.

¹H- and ¹³C-NMR data are given in Table 36.

HR-TOFMS (ESI⁺): m/z 533.1941 [M+Na]⁺ (Calcd. for $C_{32}H_{30}O_6$ +Na, 533.1935).

Lupalbigenin 7,4'-di-O-benzoate (151)

IR: V_{max} 3062, 2975, 1750, 1733, 1645, 1619, 1582, 1512, 1447, 1245, 1223, 1165, 1106, 1058, 836, 710 cm⁻¹.

¹H- and ¹³C-NMR data are given in Table 36.

HR-TOFMS (ESI⁺): m/z 637.2205 [M+Na]⁺ (Calcd. for C₃₉H₃₄O₇+Na, 637.2197).

Reaction of Lupalbigenin (8) with Propargyl bromide

Lupalbigenin (8) (300 mg, 0.74 mmol) was dissolved in acetone (15 ml) and potassium carbonate (450 mg, 3.26 mmol) and propargyl bromide (1.11 ml) were then added. The mixture was stirred at room temperature for 8 h. Water was added and the mixture was extracted with CH₂Cl₂ (3x75 ml). The combined organic phase was washed with water, dried over anhydrous Na₂SO₄ and the solvent was removed under vacuum. The crude mixture was purified by silica column chromatography eluting with *n*-hexane-EtOAc (92:8) to give the propargyl ethers **152** (238.5 mg, 72%) and **153** (74.9 mg, 21%).

7-O-Propargyllupalbigenin (152)

IR: V_{max} 3284, 2919, 2126, 1647, 1614, 1493, 1447, 1267, 1215, 1171, 1110, 1060, 819 cm⁻¹.

¹H- and ¹³C-NMR data are given in Table 37.

HR-TOFMS (ESI⁺): m/z 467.1779 [M+Na]⁺ (Calcd. for $C_{28}H_{28}O_5$ +Na, 467.1829).

7,4'-Di-O-propargyllupalbigenin (153)

IR: V_{max} 3292, 2912, 2124, 1647, 1618, 1582, 1498, 1448, 1266, 1218, 1171, 1114, 1077, 1023 818 cm⁻¹.

¹H- and ¹³C-NMR data are given in Table 37.

HR-TOFMS (ESI⁺): m/z 505.1914 [M+Na]⁺ (Calcd. For C₃₁H₃₀O₅+Na, 505.1985).

Synthesis of 2-Azidoacetic acid (154)

To a solution of sodium azide (2.01 g, 30.92 mmol) in cold water (20 ml) was slowly added bromoacetic acid (1.80 g, 12.95 mmol) in water (5 ml) and the mixture was allowed to stir at ambient temperature overnight. The reaction mixture was acidified to pH 1 with 3M HCl and extracted with EtOAc (3x100 ml). The organic layer was dried over anhydrous Na_2SO_4 and

the solvent was evaporated in *vacuo* to afford 2-azidoacetic acid (**154**) (1.2 g, 94%) as a colorless liquid. This compound was used in subsequent reaction.

2-Azidoacetic acid (154)

¹H- and ¹³C-NMR data are given in Table 38.

Click reaction of 7-O-Propargylluaplbigenin (152) with 2-Azidoacetic acid (154)

A freshly prepared solution of $CuSO_4 \cdot 5H_2O$ (12 mg, 0.05 mmol) and sodium ascorbate (5 mg, 0.02 mmol) in 1.0 ml of water was added to a solution of compound **152** (22.2 mg, 0.05 mmol) and 2-azidoacetic acid (**154**) (4.7 mg, 0.05 mmol) in THF/ H_2O (9:1) (1.0 ml). The mixture was stirred at room temperature overnight. After completion of the reaction, cold water (3 ml) was added and the mixture was extracted with *n*-butanol (3x75 ml); the organic phase was washed with water, dried over anhydrous Na_2SO_4 and evaporated under reduce pressure to dryness. The crude mixture was separated

on reverse phase column eluting with H_2O -MeOH (60:40) to give the clicle product 155 (11.02 mg, 43%) as yellow solid.

 $7\text{-}O\text{-}[1^{\prime\prime\prime\prime}\text{-}(Carboxymethyl)\text{-}1^{\prime\prime\prime\prime}\text{,}H\text{-}3^{\prime\prime\prime\prime}\text{,}4^{\prime\prime\prime\prime}\text{,}5^{\prime\prime\prime\prime}\text{-}triazole]lupalbigenin}$

IR: V_{max} 3382, 2971, 2924, 1614, 1510, 1486, 1450, 1390, 1270, 1219, 1172, 1113, 1061, 815 cm⁻¹.

¹H- and ¹³C-NMR data are given in Table 39.

HR-TOFMS (ESI): m/z 544.2110 [M-H] (Calcd. For $C_{30}H_{31}N_3O_7$ –H, 544.2089).

Table 11 ¹H- and ¹³C-NMR Data of Compound **1**

Position	Derrisiso	flavone A (1)
	¹ H-NMR	¹³ C-NMR
2	7.82 (s)	150.7
3	-	126.7
4	-	176.1
5	-	156.1
6	-	119.4
7	-	158.0
8	-	111.5
9	-	155.0
10	-	112.8
1′	-	123.4
2', 6'	7.30 (<i>d</i> , 7.3)	130.3
3', 5'	6.83 (<i>d</i> , 7.3)	115.5
4′	-	156.5
1''	3.46 (br d, 7.2)	22.4
2''	5.18 (br t, 7.2)	121.6
3''	-	135.3
4''	1.79 (s)	18.0
5''	1.70 (s)	25.8
1′′′	3.49 (br d, 7.7)	22.2
2'''	5.17 (br t,7.7)	121.1
3'''	-	134.3
4'''	1.79 (s)	17.9
5'''	1.69 (s)	25.7
5-OCH ₃	3.77 (s)	62.4

Recorded in CDCl₃.

Table 12 ¹H- and ¹³C-NMR Data of Compound 7

Position	5,7,4'-Trihydroxy-6,8-diphenylisoflavone (7)	
	¹H-NMR	¹³ C-NMR
2	7.87 (s)	152.7
3	-	123.2
4	-	181.4
5	-	159.6
6	-	110.2
7	-	157.5
8	-	105.4
9	-	153.4
10	-	105.8
1'	-	123.0
2', 6'	7.32 (<i>d</i> , 8.4)	130.3
3', 5'	6.81 (<i>d</i> , 8.4)	115.7
4′	-	156.0
1"	3.44 (br d, 7.0)	21.6
2''	5.24 (<i>br t</i> , 7.0)	121.3
3"	-	135.5
4''	1.82 (s)	17.9
5''	1.75 (s)	25.7
1'''	3.46 (br d, 6.7)	21.6
2'''	5.20 (br t, 6.7)	121.4
3'''	-	134.1
4'''	1.81 (s)	17.9
5'''	1.72 (s)	25.8
5-OH	13.08 (s)	-
4'-OH	6.36 (s)	-

Recorded in CDCl₃.

Table 13 ¹H- and ¹³C-NMR Data of Compound **8**

Position	Lupalbigenin (8)	
	¹H-NMR	¹³ C-NMR
2	7.77 (s)	152.5
3	-	123.0
4	-	181.0
5	-	159.6
6	-	110.5
7	-	161.4
8	6.35 (s)	93.7
9	-	156.1
10	-	105.8
1'	-	123.7
2'	7.22 (br d, 2.2)	130.3
3'	-	127.3
4'	-	154.7
5'	6.83 (br d, 8.7)	115.7
6'	7.22 (br dd, 8.7, 2.2)	128.1
1''	3.41 (<i>d</i> , 7.0)	21.5
2"	5.25 (br t, 7.0)	121.3
3"	-	134.9
4''	1.80 (s)	17.9
5''	1.72 (s)	25.8
1'''	3.36 (<i>d</i> , 7.2)	29.6
2'''	5.32 (br t, 7.2)	121.7
3'''	-	134.9
4'''	1.75 (s)	17.9
5'''	1.74 (s)	25.8
5-OH	13.17 (s)	-

Recorded in $CDCl_3 + 3$ drops of CD_3OD .

Table 14 ¹H- and ¹³C-NMR Data of Compound **9**

Position	Scandinone (9)	
	¹H-NMR	¹³ C-NMR
2	7.80 (s)	150.3
3	-	125.7
4	-	175.7
5	-	158.0
6	-	121.7
7	-	155.9
8	-	105.8
9	-	152.1
10	-	112.6
1'	-	123.2
2', 6'	7.29 (d, 8.4)	130.4
3', 5'	6.82 (<i>d</i> , 8.4)	115.4
4'	-	156.7
1''	3.36 (d, 6.9)	22.1
2''	5.14 (<i>br t</i> , 6.9)	122.5
3"	-	131.4
4''	1.78 (s)	17.9
5''	1.65 (s)	25.6
1'''	6.74 (<i>d</i> , 10.0)	115.1
2'''	5.63 (d, 10.0)	128.8
3'''	-	77.8
4''', 5'''	1.46 (s)	28.0
5-OCH ₃	3.83 (s)	62.3
4'-OH	6.44 (s)	-

Recorded in $CDCl_3 + 2$ drops of CD_3OD .

Table 15 ¹H- and ¹³C-NMR Data of Compound **28**

Position	Scanderone (28)	
	¹H-NMR	¹³ C-NMR
2	7.83 (s)	152.5
3	-	123.8
4	-	181.0
5	-	159.4
6	6.36 (s)	94.8
7	-	156.8
8	-	105.5
9	-	157.3
10	-	106.1
1'	-	122.4
2'	7.24 (<i>br s</i>)	130.3
3'	-	127.6
4'	-	154.7
5'	6.84 (<i>d</i> , 8.8)	115.5
6'	7.24 (br d, 8.8)	127.9
1''	6.75 (d, 10.0)	115.4
2"	5.65 (<i>d</i> ,10.0)	128.1
3"	-	78.0
4", 5"	1.50 (s)	28.2
1'''	3.39 (<i>d</i> , 7.1)	29.2
2'''	5.38 (br t, 7.1)	121.8
3'''	-	134.1
4'''	1.78 (s)	17.8
5'''	1.78 (s)	25.7
5-OH	13.21 (s)	-

Recorded in $CDCl_3 + 2$ drops of CD_3OD .

Table 16 ¹H- and ¹³C-NMR Data of Compound **43**

Position	4'-O-Methylosajin (43)	
	¹H-NMR	¹³ C-NMR
2	7.88 (s)	152.5
3	-	123.1
4	-	181.2
5	-	154.7
6	-	107.4
7	-	156.8
8	-	105.4
9	-	154.9
10	-	105.9
1'	-	123.2
2', 6'	7.44 (<i>d</i> , 8.0)	130.1
3', 5'	6.96 (d, 8.0)	114.0
4′	-	159.7
1''	3.38 (<i>d</i> , 7.2)	21.3
2''	5.16 (<i>t</i> , 7.2)	122.0
3''	-	131.7
4''	1.79 (s)	17.9
5''	1.66 (s)	25.8
1′′′	6.72 (<i>d</i> , 10.0)	115.8
2'''	5.60 (<i>d</i> , 10.0)	128.0
3'''	-	77.8
4''', 5'''	1.45(s)	28.2
5-OH	13.09 (s)	-
4'-OCH ₃	3.82 (s)	55.3

Recorded in CDCl₃.

Table 17 ¹H- and ¹³C-NMR Data of Compound **44**

Position	Osajin (44)	
	¹H-NMR	¹³ C-NMR
2	7.87 (s)	152.8
3	-	122.7
4	-	181.5
5	-	157.0
6	-	107.5
7	-	154.8
8	-	105.5
9	-	152.8
10	-	105.9
1'	-	123.4
2', 6'	7.29 (<i>d</i> , 8.4)	130.3
3', 5'	6.78 (<i>d</i> , 8.4)	115.7
4′	-	156.2
1''	3.38 (<i>d</i> , 7.1)	21.3
2''	5.17 (<i>t</i> , 7.1)	121.9
3''	-	131.7
4''	1.80 (s)	17.9
5''	1.67 (s)	25.7
1'''	6.72 (<i>d</i> , 10.0)	115.8
2'''	5.61 (<i>d</i> , 10.0)	128.1
3'''	-	77.8
4''', 5'''	1.45 (s)	28.2
5-OH	13.00 (s)	-

Recorded in CDCl₃.

Table 18 ¹H- and ¹³C-NMR Data of Compound **51**

Position	Scan	idenin (51)
	¹H-NMR	¹³ C-NMR
2	-	163.0
3	-	103.6
4	-	160.9
5	-	153.9
6	-	119.1
7	-	155.1
8	-	106.7
9	-	147.1
10	-	101.1
1′	-	123.1
2', 6'	7.37 (d, 8.4)	131.8
3', 5'	6.84 (<i>d</i> , 8.4)	115.2
4′	-	155.3
1"	3.31 (<i>d</i> , 6.3)	22.4
2''	5.14 (<i>br t</i> , 6.3)	122.0
3''	-	132.4
4''	1.84 (s)	18.0
5''	1.69 (s)	25.7
1'''	6.87 (<i>d</i> , 10.0)	115.3
2'''	5.67 (d, 10.0)	129.6
3′′′	-	78.1
4''', 5'''	1.45 (s)	28.0
5-OCH ₃	3.90 (s)	63.9
4'-OH	10.18 (s)	-

Table 19 ¹H- and ¹³C-NMR Data of Compounds **124** and **125**

Position	Derrisisoflavone A	A 7-O-acetate (124)	Derrisisoflavone A 4'-O-acetate (125)	
	¹ H-NMR	¹³ C-NMR	¹H-NMR	¹³ C-NMR
2	7.87 (s)	151.0	7.87 (s)	150.9
3	-	125.9	-	124.8
4	-	175.9	-	175.2
5	-	156.7	-	156.2
6	-	126.1	-	119.4
7	-	151.7	-	158.1
8	-	119.7	-	111.5
9	-	154.6	-	154.9
10	-	117.5	-	112.9
1'	-	123.6	-	129.8
2', 6'	7.28 (d, 8.4)	130.4	7.55 (dd, 8.6, 2.0)	130.3
3', 5'	6.77 (d, 8.4)	115.6	7.12 (dd, 8.6, 2.0)	121.5
4′	-	156.1	-	150.4
1''	3.32 (br s)	23.7	3.50 (d, 8.0)	22.7
2''	5.07 (br t, 7.0)	122.1	5.18 (br t, 8.0)	121.5
3''	-	132.2	-	135.6
4''	1.75 (s)	17.9	1.83 (s)	18.0
5''	1.66 (s)	25.6	1.74 (s)	25.8
1'''	3.36 (<i>br s</i>)	23.6	3.52 (d, 8.0)	22.2
2'''	5.10 (br t, 7.1)	120.6	5.23 (br t, 8.0)	121.0
3'''	-	132.9	-	134.5
4'''	1.76 (s)	17.9	1.82 (s)	18.0
5'''	1.68 (s)	25.6	1.72 (s)	25.8
5-OCH ₃	3.82 (s)	62.6	3.80 (s)	62.4
4'- <u>CO</u> CH ₃	-	-	-	169.6
4'-CO <u>CH</u> ₃	-	-	2.29 (s)	21.2
7- <u>CO</u> CH ₃	-	168.7	-	-
7-CO <u>CH</u> 3	2.33 (s)	20.6	-	-

Table 20 ¹H- and ¹³C-NMR Data of Compound **126**

Position	Derrisisoflavone A 7,4'-di-O-acetate (126)	
	¹H-NMR	¹³ C-NMR
2	7.91 (s)	151.3
3	-	125.3
4	-	175.2
5	-	156.7
6	-	126.2
7	-	151.8
8	-	119.7
9	-	154.5
10	-	117.5
1'	-	129.4
2', 6'	7.54 (<i>d</i> , 8.4)	130.2
3', 5'	7.13 (<i>d</i> , 8.4)	121.6
4′	-	150.6
1"	3.32 (<i>br s</i>)	23.6
2''	5.07 (br t, 6.5)	122.0
3''	-	132.1
4''	1.75 (s)	17.9
5''	1.66 (s)	25.6
1'''	3.37 (br s)	23.7
2'''	5.11 (<i>br t</i> , 6.9)	120.6
3'''	-	132.8
4'''	1.77 (s)	17.8
5'''	1.68 (s)	25.6
5-OCH ₃	3.83 (s)	62.5
4'- <u>CO</u> CH ₃	-	169.4
4'-CO <u>CH</u> ₃	2.91 (s)	21.1
7- <u>CO</u> CH ₃	-	168.5
7-CO <u>CH</u> ₃	2.32 (s)	20.5

Table 21 ¹H- and ¹³C-NMR Data of Compounds **127** and **128**

Position	Lupalbigenin 7-O	-acetate (127)	Lupalbigenin 4'-O-acetate (128)	
	¹ H-NMR	¹³ C-NMR	¹H-NMR	¹³ C-NMR
2	7.87 (s)	153.3	7.82 (s)	153.1
3	-	124.0	-	123.3
4	-	181.5	-	180.6
5	-	160.1	-	159.7
5	-	117.3	-	110.2
7	-	154.1	-	161.5
3	6.69 (s)	101.1	6.35 (s)	94.0
)	-	154.7	-	156.1
10	-	109.3	-	105.9
1′	-	122.7	-	128.8
2'	7.22 (br d, 2.8)	130.5	7.34 (<i>br s</i>)	130.7
3'	-	127.2	-	133.4
4′	-	154.1	-	149.0
5'	6.82 (d, 8.4)	115.9	7.06 (d, 8.0)	122.5
6'	7.23 (br dd, 8.4, 2.8)	128.1	7.35 (br d, 8.0)	127.7
1''	3.30 (d, 6.7)	22.3	3.44 (<i>d</i> , 7.0)	21.5
2''	5.12 (br t, 6.7)	121.1	5.25 (br t, 7.0)	121.0
3''	-	132.5	-	136.1
4''	1.75 (s)	17.8	1.82 (s)	17.9
5''	1.66 (s)	25.7	1.75 (s)	25.8
1'''	3.37 (d, 7.0)	29.7	3.26 (d, 7.0)	28.9
2'''	5.32 (br t, 7.0)	121.5	5.21 (br t, 7.0)	121.3
3'''	-	135.0	-	133.8
4'''	1.77 (s)	17.9	1.68 (s)	17.9
5'''	1.75 (s)	25.8	1.71 (s)	25.7
5-ОН	13.13 (s)	-	13.16 (s)	-
4'- <u>CO</u> CH ₃	-	-	-	169.5
4′-CO <u>CH</u> ₃	-	-	2.31 (s)	20.9
7- <u>CO</u> CH ₃	-	168.6	-	-
7-CO <u>CH</u> ₃	2.33 (s)	20.9	-	-

Table 22 ¹H- and ¹³C-NMR Data of Compound **129**

Position	Lupalbigenin 7,4'	-O-diacetate (129)
	¹H-NMR	¹³ C-NMR
2	7.91 (s)	153.7
3	-	123.6
4	-	181.1
5	-	160.1
6	-	117.5
7	-	154.6
8	6.71 (s)	101.2
9	-	154.2
10	-	109.2
1'	-	128.4
2'	7.34 (br d, 2.1)	130.6
3'	-	133.9
4′	-	149.1
5'	7.08 (d, 8.0)	122.5
6'	7.35 (br dd, 8.0, 2.1)	127.3
1''	3.31 (<i>d</i> , 6.9)	22.3
2''	5.12 (<i>dd</i> , 6.9, 1.2)	120.7
3''	-	132.5
4''	1.75 (s)	17.8
5''	1.67 (s)	25.6
1'''	3.37 (<i>d</i> , 7.1)	28.9
2'''	5.22 (<i>dd</i> , 7.1, 1.3)	121.0
3'''	-	133.5
4'''	1.72 (s)	17.8
5'''	1.69 (s)	25.6
5-OH	13.08 (s)	-
4'- <u>CO</u> CH ₃	-	169.3
4'-CO <u>CH</u> ₃	2.31 (s)	20.8
7- <u>CO</u> CH ₃	-	168.4
7-CO <u>CH₃</u>	2.33 (s)	20.9

Table 23 ¹H- and ¹³C-NMR Data of Compound **130**

Position	Osajin 4'-	-O-acetate (130)
	¹H-NMR	¹³ C-NMR
2	7.91 (s)	153.0
3	-	122.7
4	-	180.8
5	-	154.6
6	-	107.5
7	-	157.0
8	-	105.5
9	-	154.9
10	-	105.8
1'	-	128.6
2', 6'	7.53 (d, 7.8)	130.0
3', 5'	7.15 (<i>d</i> , 7.8)	121.8
4′	-	150.7
1"	3.38 (<i>d</i> , 7.1)	21.3
2"	5.16 (<i>t</i> , 7.1)	121.9
3''	-	131.7
4''	1.79 (s)	17.9
5''	1.67 (s)	25.8
1′′′	6.72 (d, 10.0)	115.8
2'''	5.61 (<i>d</i> , 10.0)	128.1
3′′′	-	77.8
4''', 5'''	1.45(s)	28.2
5-OH	12.99 (s)	-
4'- <u>CO</u> CH ₃	-	169.4
4'-CO <u>CH</u> ₃	2.30 (s)	21.1

Table 24 ¹H- and ¹³C-NMR Data of Compounds **131** and **132**

Position	Derrisisoflavone A 7	-O-methyl ether (131)	Derrisisoflavone A 4'-O-methyl ether (132)	
	¹H-NMR	¹³ C-NMR	¹ H-NMR	¹³ C-NMR
2	7.89 (s)	151.1	7.84 (s)	150.4
3	-	125.8	-	125.2
4	-	176.4	-	175.6
5	-	161.2	-	156.2
6	-	127.1	-	119.2
7	-	156.9	-	157.9
8	-	119.9	-	111.5
9	-	155.3	-	154.9
10	-	116.0	-	113.0
1'	-	123.4	-	124.5
2', 6'	7.28 (d, 8.5)	130.4	7.45 (d, 7.7)	130.3
3', 5'	6.81 (<i>d</i> , 8.5)	115.7	6.94 (d, 7.7)	113.9
4′	-	156.3	-	159.4
1"	3.43 (d, 6.5)	23.3	3.50 (<i>d</i> , 7.4)	22.7
2"	5.19 (br t, 6.5)	123.3	5.19 (br t, 7.4)	121.6
3"	-	131.7	-	135.5
4''	1.79 (s)	17.9	1.82 (s)	18.0
5''	1.66 (s)	25.7	1.74 (s)	25.8
1'''	3.51 (<i>d</i> , 6.5)	23.1	3.50 (<i>d</i> , 7.4)	22.2
2'''	5.19 (br t, 6.5)	122.0	5.22 (br t, 7.4)	121.1
3'''	-	132.5	-	134.3
4'''	1.81 (s)	17.9	1.82 (s)	17.9
5'''	1.69 (s)	25.7	1.72 (s)	25.8
5-OCH ₃	3.79 (s)	62.3	3.80 (s)	62.4
4'-OCH ₃	-	-	3.80 (s)	55.3
7-OCH ₃	3.84 (s)	62.0	-	-

Table 25 ¹H- and ¹³C-NMR Data of Compound **133**

Position	Derrisisoflavone A 7,4'-di-O-methyl ether (133)		
	¹H-NMR	¹³ C-NMI	
2	7.88 (s)	150.8	
3	-	127.1	
4	-	175.7	
5	-	157.1	
6	-	126.3	
7	-	161.0	
8	-	119.8	
9	-	155.3	
10	-	115.2	
1′	-	125.5	
2', 6'	7.45 (<i>d</i> , 7.8)	130.3	
3', 5'	6.94 (<i>d</i> , 7.8)	113.9	
4′	-	159.5	
1''	3.42 (<i>d</i> , 5.7)	23.3	
2''	5.19 (br t, 5.7)	123.3	
3''	-	131.7	
4''	1.77 (s)	18.0	
5''	1.66 (s)	25.7	
1'''	3.51 (<i>d</i> , 6.2)	23.2	
2'''	5.19 (br t, 6.2)	122.0	
3'''	-	132.5	
4'''	1.80 (s)	18.0	
5'''	1.69 (s)	25.7	
5-OCH ₃	3.81 (s)	62.3	
4'-OCH ₃	3.81 (s)	55.3	
7-OCH ₃	3.78 (s)	62.0	

Table 26 ¹H- and ¹³C-NMR Data of Compounds **134** and **135**

Position	Lupalbigenin 7-O-	-methyl ether (134)	Lupalbigenin 7,4'-O-dimethyl ether (135)	
	¹ H-NMR	¹³ C-NMR	¹H-NMR	¹³ C-NMR
2	7.82 (s)	152.4	7.81 (s)	152.3
3	-	123.0	-	122.9
4	-	180.9	-	180.9
5	-	158.8	-	158.9
6	-	113.0	-	113.0
7	-	163.2	-	163.2
8	6.38 (s)	89.4	6.37 (s)	89.4
9	-	156.4	-	156.4
10	-	106.2	-	106.3
1'	-	123.9	-	124.0
2'	7.21 (s)	121.9	7.22 (d, 2.1)	129.7
3'	-	127.3	-	130.4
4′	-	154.7	-	157.5
5'	6.82 (d, 8.9)	115.9	6.89 (d, 8.4)	110.3
6'	7.23 (br d, 8.9)	128.1	7.33 (dd, 8.4, 2.1)	127.7
1''	3.35 (br d, 7.0)	21.4	3.35 (br d, 5.8)	21.4
2''	5.12 (br t, 7.0)	121.9	5.20 (br t, 5.8)	122.0
3''	-	132.0	-	131.9
4''	1.77 (s)	17.8	1.78 (s)	17.8
5''	1.66 (s)	25.8	1.66 (s)	25.8
1'''	3.34 (br d, 7.1)	29.7	3.33 (br d, 5.9)	28.5
2'''	5.32 (br t, 7.1)	121.6	5.30 (br t, 5.9)	122.3
3'''	-	134.8	-	132.7
4'''	1.77 (s)	17.9	1.72 (s)	17.8
5'''	1.76 (s)	28.8	1.70 (s)	25.8
5-OH	12.90 (s)	-	12.91 (s)	-
4'-OCH ₃	-	-	3.84 (s)	55.5
7-OCH ₃	3.87 (s)	55.9	3.88 (s)	55.9

Table 27 ¹H- and ¹³C-NMR Data of Compounds **136** and **137**

Position	Tetrahydroderrisise	oflavone A (136)	Hexahydroderrisisoflavone A (137)	
	¹ H-NMR	¹³ C-NMR	¹ H-NMR	¹³ C-NMR
2α	504()	150.0	4.49 (dd, 11.2, 9.0)	70.0
2β _	7.84 (s)	150.8	4.51 (dd, 11.2, 5.2)	70.9
3	-	125.4	3.68 (br dd, 9.0, 5.2)	52.0
4	-	176.3	-	191.1
5	-	156.0	-	157.9
6	-	121.2	-	117.1
7	-	156.5	-	158.8
8	-	112.8	-	112.4
9	-	154.9	-	159.7
10	-	112.5	-	108.8
1′	-	123.4	-	127.0
2', 6'	7.29 (<i>d</i> , 8.4)	130.4	7.03 (d, 8.3)	129.5
3', 5'	6.81 (<i>d</i> , 8.4)	115.5	6.71 (d, 8.3)	115.6
4'	-	156.5	-	155.9
1''	2.67 (dd, 8.2, 3.0)	21.4	2.68 (t, 9.4)	21.0
2"	1.36-1.44 (m) ^a	38.9	1.29-1.31 (m) ^a	39.0
3"	1.58-1.65 (m) ^b	28.5	1.49-160 (m)	28.4
4''	0.95 (s)	22.4	0.90 (s)	22.4
5''	0.94 (s)	22.4	0.89 (s)	22.4
1'''	2.75 (dd, 8.0, 2.7)	21.0	2.54 (t, 8.7)	20.8
2'''	$1.36-1.44 (m)^{c}$	38.1	1.30-1.32 (<i>m</i>) ^b	38.1
3′′′	$1.58\text{-}1.65 (m)^{d}$	28.3	1.49-1.60 (m)	28.1
4'''	0.97 (s)	22.3	0.90 (s)	22.4
5'''	0.95 (s)	22.3	0.89 (s)	22.4
5-OCH ₃	3.83 (s)	62.4	3.71 (s)	61.7

Recorded in CDCl₃ + 2 drops of CD₃OD.

^{a,b,c,d}Partially overlapping signals.

Table 28 ¹H- and ¹³C-NMR Data of Compounds **138** and **139**

Position	Dihydrolupalbigenin (138)		Tetrahydrolupalbigenin (139)	
	¹H-NMR	¹³ C-NMR	¹H-NMR	¹³ C-NMR
2	7.80 (s)	152.6	7.75 (s)	154.2
3	-	123.1	-	123.5
4	-	181.0	-	182.6
5	-	159.6	-	160.7
6	-	109.9	-	114.7
7	-	161.4	-	163.8
8	6.36 (s)	94.0	6.28 (s)	94.3
9	-	156.1	-	157.7
10	-	105.9	-	106.5
1'	-	123.6	-	125.2
2'	7.23 (br s)	130.6	7.18 (<i>d</i> , 1.8)	131.9
3'	-	129.1	-	131.1
4′	-	153.7	-	156.6
5'	6.64 (<i>d</i> , 8.1)	115.4	6.73 (d, 8.2)	116.3
6'	7.20 (<i>br d</i> , 8.1)r	127.7	7.14 (<i>dd</i> , 8.2, 1.8)	128.8
1''	3.45 (<i>d</i> , 7.1)	21.5	2.63 (dd, 7.9, 2.4)	21.6
2''	5.26 (br t, 7.1)	121.0	1.36-1.40 (m)	39.2
3''	-	136.2	1.52-1.63 (m)	29.4
4''	1.82 (s)	17.9	0.94 (s)	23.6
5''	1.76 (s)	25.8	0.91 (s)	23.6
1'''	2.61 (<i>t</i> , 8.2)	27.8	2.59 (dd, 8.2, 2.4)	29.3
2'''	1.47-1.53 (m)	38.8	1.44-1.50 (m)	40.4
3′′′	1.55-1.65 (m)	28.0	1.52-1.63 (m)	29.6
4'''	0.94 (s)	22.5	0.92 (s)	23.6
5'''	0.93 (s)	22.5	0.92 (s)	23.6
5-OH	13.23 (s)	-	13.05(s)	-

Compound 138 recorded in CDCl₃.

Compound 139 recorded in CD₃OD + CDCl₃.

Table 29 ¹H- and ¹³C-NMR Data of Compound **140**

Position	Hexahydrolup	palbigenin (140)
	¹ H-NMR	¹³ C-NMR
2α	4.47 (dd, 11.0, 9.3)	-1 4
2β	4.52 (dd, 11.0, 5.3)	71.4
3	3.85 (dd, 9.3, 5.3)	50.7
4	-	197.0
5	-	162.1
6	-	109.5
7	-	162.3
8	5.90 (s)	94.5
9	-	160.6
10	-	103.0
1'	-	129.5
2'	6.99 (br s)	130.3
3'	-	126.9
4'	-	153.2
5'	6.69 (<i>d</i> , 8.1)	115.6
6'	6.94 (<i>d</i> , 8.1)	126.9
1"	2.51 (t, 8.2)	19.8
2"	1.35-1.39 (m)	37.9
3"	1.56-1.63 (m)	28.2
4''	0.94 (s)	22.5
5''	0.91 (s)	28.0
1'''	2.55 (t, 8.1)	27.8
2'''	1.44-1.48 (m)	38.7
3'''	1.56-1.63 (m)	28.2
4'''	0.92 (s)	22.5
5'''	0.92 (s)	28.0
5-OH	12.36 (s)	-

Table 30 ¹H- and ¹³C-NMR Data of Compounds **141** and **142**

Position	Tetrahydro	Tetrahydroosajin (141)		Hexahydroosajin (142)	
	¹H-NMR	¹³ C-NMR	¹H-NMR	¹³ C-NMR	
2α –] ()	1.50.0	4.43 (dd, 11.3, 8.5)	-1.0	
2β _	7.87 (s)	152.8	4.52 (dd, 11.3, 5.0)	71.2	
3	-	123.1	3.84 (dd, 8.5, 5.0)	50.6	
4	-	181.5	-	197.4	
5	-	157.2	-	159.6	
6	-	108.4	-	109.4	
7	-	158.1	-	161.0	
8	-	104.6	-	101.6	
9	-	153.1	-	157.2	
10	-	104.9	-	101.9	
1'	-	122.8	-	127.2	
2', 6'	7.32 (d, 8.5)	130.3	7.07 (d, 8.4)	129.8	
3', 5'	6.90 (d, 8.5)	115.7	6.71 (d, 8.4)	115.8	
4′	-	156.1	-	155.4	
1''	2.68 (br t, 7.9)	20.0	2.49 (br t, 7.8)	19.9	
2''	$1.30\text{-}1.39 (m)^{a}$	38.6	1.33-1.26 (m)	38.6	
3''	1.51-1.60 (m)	27.9	1.47-1.52 (m)	27.8	
4''	0.95 (s)	22.6	0.92 (s)	22.6	
5''	0.93 (s)	22.6	0.90 (s)	22.7	
1'''	2.72 (t, 6.8)	16.3	2.60 (t, 6.8)	15.9	
2'''	1.80 (t, 6.8)	31.6	1.76 (t, 6.8)	31.6	
3'''	-	75.8	-	76.1	
4''', 5'''	1.35 (s)	26.8	1.33 (s)	26.8	
5-OH	13.06 (s)	-	12.43 (s)	-	

^aPartially overlapping signals.

Table 31 ¹H- and ¹³C-NMR Data of Compound **143**

Position	Tetrahydrolupalbigenin 7-O-methyl ether (143)		
	¹H-NMR	¹³ C-NMR	
2	7.82 (s)	152.3	
3	-	123.3	
4	-	180.9	
5	-	158.9	
6	-	114.4	
7	-	163.4	
8	6.38 (s)	89.2	
9	-	156.2	
10	-	106.1	
1′	-	123.9	
2'	7.23 (br s)	130.6	
3'	-	129.1	
4′	-	153.7	
5′	6.77 (d, 8.1)	115.4	
5′	7.20 (br d, 8.1)	127.7	
<u>'</u> "	$2.63 (m)^a$	20.2	
2''	1.34-1.39 (m)	37.8	
3''	1.65-1.54 (<i>m</i>)	28.0	
4''	0.95 (s)	22.5	
5''	0.94 (s)	22.5	
1′′′	2.62 (m) ^b	27.8	
2'''	1.47-1.54 (m)	38.8	
3′′′	1.65-1.45 (m)	28.2	
4′′′	0.94 (s)	22.6	
5'''	0.93 (s)	22.6	
5-OH	12.88 (s)	-	
7-OCH ₃	3.83 (s)	55.8	

^{a,b}Partially overlapping signals.

Table 32 ¹H- and ¹³C-NMR Data of Compounds **144** and **145**

Position	Derrisisoflavone A 7-O-propanoate (144)		Derrisisoflavone A- 4'-O-propanoate (145)	
	¹ H-NMR	¹³ C-NMR	¹ H-NMR	¹³ C-NMR
2	7.86 (s)	151.0	7.86 (s)	150.9
3	-	126.1	-	129.7
4	-	176.0	-	175.2
5	-	156.1	-	156.3
6	-	119.8	-	119.5
7	-	151.8	-	158.0
8	-	115.5	-	111.5
9	-	154.6	-	154.9
10	-	117.4	-	113.0
1'	-	123.5	-	124.9
2', 6'	7.28 (d, 8.0)	130.4	7.54 (d, 8.4)	130.2
3', 5'	6.77 (d, 8.0)	115.5	7.12 (<i>d</i> , 8.4)	121.5
4'	-	156.6	-	150.6
1''	3.34 (<i>br s</i>)	23.6	3.51 (<i>d</i> , 7.4)	22.7
2''	5.05 (br t, 9.6)	122.1	5.19 (br t, 7.4)	121.6
3''	-	132.2	-	135.4
4''	1.73 (s)	17.9	1.83 (s)	17.9
5''	1.65 (s)	25.6	1.74 (s)	25.8
1'''	3.34 (<i>br s</i>)	23.5	3.51 (<i>d</i> , 7.4)	22.2
2'''	5.09 (br t, 8.5)	119.8	5.23 (br t, 7.4)	121.1
3'''	-	132.9	-	134.4
4'''	1.75 (s)	17.9	1.83 (s)	17.9
5'''	1.67 (s)	25.6	1.72 (s)	25.8
5-OCH ₃	3.81 (s)	62.5	3.81 (s)	62.4
4'- <u>CO</u> CH ₂ CH ₃	-	-	-	172.9
4'-CO <u>CH</u> 2CH3	-	-	2.58 (q, 7.5)	27.8
4'-COCH ₂ CH ₃	-	-	1.25 (t, 7.5)	9.0
7-COCH ₂ CH ₃	-	172.3	-	-
7-CO <u>CH</u> ₂ CH ₃	2.63 (q, 7.6)	27.4	-	-
7-COCH ₂ CH ₃	1.27 (t, 7.6)	9.0	-	-

Table 33 ¹H- and ¹³C-NMR Data of Compound **146**

Position	Derrisisoflavone A 7	,4'-di- <i>O</i> -propanonate (146)
	¹ H-NMR	¹³ C-NMR
2	7.91 (s)	151.3
3	-	125.4
4	-	175.3
5	-	156.7
6	-	126.3
7	-	151.9
8	-	119.8
9	-	154.5
10	-	117.5
1′	-	128.9
2'. 6'	7.54 (d, 8.5)	130.2
3', 5'	7.13 (<i>d</i> , 8.5)	121.6
4'	-	150.7
1''	3.30 (<i>br s</i>)	23.7
2''	5.06 (br t, 6.6)	122.1
3''	-	132.8
4''	1.73 (s)	17.9
5''	1.65 (s)	25.6
1′′′	3.36 (<i>br s</i>)	23.6
2'''	5.10 (br t, 6.7)	120.7
3'''	-	133.4
4'''	1.76 (s)	17.9
5'''	1.68 (s)	25.6
5-OCH ₃	3.83 (s)	62.5
4'- <u>CO</u> CH ₂ CH ₃	-	172.0
4′-CO <u>CH</u> ₂ CH ₃	2.56 (q, 7.4)	27.4
4'-COCH ₂ <u>CH₃</u>	1.25 (t, 7.4)	9.1
7-COCH ₂ CH ₃	-	172.9
7-СО <u>СН₂</u> СН ₃	2.62 (q, 7.4)	27.8
7-COCH ₂ CH ₃	1.27 (t, 7.4)	9.0

Table 34 ¹H- and ¹³C-NMR Data of Compound **147**

Position	5'-Nitrolupa	lbigenin (147)
	¹ H-NMR	¹³ C-NMR
2	7.81 (s)	152.8
3	-	122.8
4	-	180.1
5	-	159.5
6	-	111.7
7	-	161.8
8	6.32 (s)	93.6
9	-	155.9
10	-	105.3
1'	-	121.7
2'	7.58 (<i>d</i> , 1.9)	137.7
3'	-	133.7
4′	-	153.3
5'	-	133.1
6'	8.07 (<i>d</i> , 1.9)	122.6
1''	3.36 (<i>d</i> , 6.9)	21.4
2''	5.22 (br t, 6.9)	121.4
3''	-	133.6
4''	1.78 (s)	17.8
5''	1.72 (s)	25.7
1'''	3.41 (<i>dd</i> , 7.3, 1.2)	28.1
2'''	5.82 (br t, 7.3)	120.3
3′′′	-	134.5
4'''	1.69 (s)	17.8
5'''	1.69 (s)	25.7
4'-OH	10.96	-
5-OH	12.82 (s)	-

Recorded in $CDCl_3 + 2$ drops of CD_3OD .

Table 35 ¹H- and ¹³C-NMR Data of Compounds **148** and **149**

Position	2"',3"'-Epoxylupalbigenin (148)		2",3",2"",3""-Diepoxylupalbigenin (1 49)	
	¹H-NMR	¹³ C-NMR	¹H-NMR	¹³ C-NMR
2	7.80 (s)	152.6	7.79 (s)	152.8
3	-	123.1	-	123.0
4	-	180.9	-	181.0
5	-	159.6	-	160.1
6	-	109.9	-	103.2
7	-	161.4	-	159.2
8	6.36 (s)	94.0	6.36 (s)	94.8
9	-	156.1	-	156.0
10	-	105.9	-	105.3
1'	-	123.5	-	123.3
2'	7.24 (<i>br s</i>)	130.8	7.22 (br s, 2.2)	130.7
3'	-	118.9	-	119.1
4′	-	153.1	-	153.1
5'	6.88 (d, 8.2)	117.5	6.86 (d, 8.3)	117.4
6'	7.23 (br d, 8.2 2.2)	128.4	7.20 (dd, 8.3, 2.2)	128.3
1''a	244(150)	21.5	2.71 (dd, 17.2, 5.9)	25.2
1"b	3.44 (d, 7.0)	21.5	2.95 (dd, 17.2, 5.1)	25.3
2''	5.26 (br t, 7.0)	121.0	3.84 (<i>dd</i> , 5.9, 5.1)	69.4
3''	-	136.2	-	78.5
4''	1.82 (s)	17.9	1.36 (s)	21.9
5''	1.75 (s)	25.8	1.34 (s)	24.8
1′′′a	2.81 (dd, 16.9, 5.7)		2.80 (dd, 16.8, 5.6)	
1′′′b	3.11 (dd, 16.9, 4.5)	31.4	3.09 (dd, 16.8, 4.8)	31.3
2'''	3.81 (br dd, 5.7, 4.5)	69.6	3.79 (dd, 5.6, 4.8)	68.5
3′′′	-	76.7	-	77.2
4′′′	1.37 (s)	22.3	1.35 (s)	22.2
5'''	1.34 (s)	24.6	1.31 (s)	24.8
5-OH	13.20 (s)	-	13.15 (s)	-

Compound 148 recorded in CDCl₃.

Compound 149 recorded in CD₃OD.

Table 36 ¹H- and ¹³C-NMR Data of Compounds **150** and **151**

Position	Lupalbigenin 7-O-benzoate (150)		Lupalbigenin 7,4'-di-O-benzoate (151)	
	¹ H-NMR	¹³ C-NMR	¹H-NMR	¹³ C-NMR
2	7.89 (s)	153.3	7.97 (s)	153.9
3	-	122.7	-	123.7
4	-	181.6	-	181.2
5	-	160.1	-	160.1
6	-	117.6	-	117.8
7	-	154.8	-	154.7
3	6.81 (s)	101.3	6.85 (s)	101.4
)	-	154.7	-	154.6
10	-	109.3	-	109.3
l'	-	124.0	-	128.5
2'	7.24 (<i>br s</i>)	130.5	7.42 (br s)	130.7
3'	-	127.2	-	133.5
1′	-	154.5	-	149.4
5′	6.84 (d, 8.6)	115.9	7.23 (d, 8.5)	122.7
5′	7.24 (br s)	128.2	7.43 (br d, 8.5)	127.6
<u>'</u> "	3.37 (<i>d</i> , 6.6)	22.4	3.38 (d, 6.8)	22.4
2''	5.14 (br t, 6.6)	121.1	5.15 (br t, 6.8)	121.1
3''	-	132.6	-	132.6
1 ′′	1.57 (s)	17.8	1.57 (s)	17.8
5''	1.55 (s)	25.6	1.65 (s)	25.6
<u>'''</u>	3.38 (d, 6.8)	29.8	3.34 (<i>d</i> , 7.1)	29.1
2'''	5.33 (br t, 6.8)	121.5	5.25 (br t, 7.1)	121.3
3′′′	-	135.1	-	134.2
ł'''	1.77 (s)	17.9	1.57 (s)	17.8
5′′′	1.76 (s)	25.8	1.57 (s)	25.6
1''''	-	164.4	-	164.3
2''''	-	128.8	-	128.8
3'''', 7''''	8.19 (d, 7.7)	130.3	$8.19-8.21 (m)^a$	130.3
ł'''', 6''''	7.52 (<i>t</i> , 7.7)	128.2	7.54 (t, 7.8)	128.6
5''''	7.66 (t, 7.7)	134.0	7.66 (t, 7.8)	134.0
3''''	-	-	-	165.0
)''''	-	-	-	129.3

Table 36 (continued)

Position	Lupalbigenin	Lupalbigenin 7-O-benzoate (150)		di-O-benzoate (151)
	¹ H-NMR	¹³ C-NMR	¹H-NMR	¹³ C-NMR
10'''', 14''''	-	-	8.19-8.21 (m) ^b	130.2
11'''', 13''''	-	-	7.52 (t, 7.9)	128.7
12''''	-	-	7.64 (<i>t</i> , 7.9)	133.6
5-OH	13.17 (s)	-	13.14 (s)	-

^{a,b}Partially overlapping signals.

Table 37 ¹H- and ¹³C-NMR Data of Compounds **152** and **153**

Position	7- <i>O</i> -Propargyllupalbigenin (152)		7,4'-Di- <i>O</i> -propargyllupalbigenin (153)	
	¹H-NMR	¹³ C-NMR	¹H-NMR	¹³ C-NMR
2	7.83 (s)	152.5	7.83 (s)	152.6
3	-	123.0	-	123.8
4	-	180.9	-	180.9
5	-	159.1	-	159.2
6	-	113.5	-	113.6
7	-	160.9	-	161.0
3	6.50 (s)	90.6	6.49 (s)	90.7
)	-	156.0	-	156.0
10	-	106.6	-	106.7
<u>'</u>	-	123.9	-	123.9
2'	7.22 (d, 2.2)	130.6	7.24 (<i>d</i> , 2.2)	130.2
3'	-	127.1	-	131.1
1′	-	154.7	-	155.6
5′	6.83 (d, 8.8)	115.9	7.00 (d, 8.4)	111.9
5'	7.22 (dd, 8.8 2.2)	128.2	7.32 (dd, 8.4, 2.2)	127.6
<u>'</u> "	3.36 (br d, 7.2)	21.5	3.36 (br d, 7.2)	21.5
2"	5.20 (dddd, 8.7, 7.2,	121.7	5.21 (dddd, 8.7, 7.2,	121.7
	2.6, 1.3)		2.7, 1.4)	
3''	-	132.1	-	132.2
! ''	1.78 (s)	17.9	1.79 (s)	17.9
5''	1.75 (s)	25.8	1.66 (s)	25.9
'''	3.37 (br d, 7.2)	29.8	3.36 (br d, 7.3)	28.6
2'''	5.32 (<i>dddd</i> , 8.7, 7.2,	121.5	5.30 (dddd, 8.9, 7.3,	122.0
	2.7, 1.3)		2.7, 1.4)	
3′′′	-	135.1	-	132.1
4′′′	1.77 (s)	17.9	1.72 (s)	17.9
5'''	1.66 (s)	25.8	1.71 (s)	25.9
5-OH	12.94 (s)	-	12.97 (s)	-
7-O <u>CH</u> 2C≡CH	4.77 (d, 2.4)	56.2	4.76 (d, 2.4)	56.3
7-OCH <u>2</u> C≡CH	-	77.6	-	77.7
7-OCH ₂ C≡ <u>CH</u>	2.55 (t, 2.4)	76.2	2.55 (t, 2.4)	76.3
4′-O <u>CH</u> 2C≡CH	-	-	4.72 (<i>d</i> , 2.4)	56.1

Table 37 (continued)

Position	7-O-Propargyllupalbigenin (152)		7,4'-Di-O-propargyllupalbigenin (153)	
	¹ H-NMR	¹³ C-NMR	¹ H-NMR	¹³ C-NMR
4′-OCH ₂ <u>C</u> ≡CH	-	-	-	78.8
4'-OCH ₂ C≡ <u>CH</u>	-	-	2.50 (t, 2.4)	75.5

Table 38 ¹H- and ¹³C-NMR Data of Compound **154**

Position	2	-Azidiacetic acid (154)
	¹ H-NMR	¹³ C-NMR
1	-	173.8
2	3.94 (s)	50.0
3-OH	9.33 (s)	-

Table 39 ¹H- and ¹³C-NMR Data of Compound **155**

Position	7- <i>O</i> -[1''''-(Carboxymethyl)-1'''', <i>H</i> -3''''',4'''',5''''-triazole]lupalbigenin (155)			
	¹H-NMR	¹³ C-NMR		
2	8.13 (s)	155.1		
3	-	123.4		
4	-	182.7		
5	-	159.9		
6	-	114.4		
7	-	163.6		
8	6.85 (s)	92.1		
9	-	158.0		
10	-	107.5		
1'	-	125.5		
2'	7.26 (<i>d</i> , 2.2)	131.6		
3'	-	129.6		
4′	-	156.8		
5'	6.86 (br d, 8.2)	115.9		
6'	7.20 (dd, 8.2, 2.2)	128.9		
1''	$3.31 (m)^{a}$	22.5		
2''	5.18 (br t, 7.3)	123.2		
3''	-	132.6		
4''	1.67 (s)	18.1		
5''	1.64 (s)	26.1		
1'''	3.33 (m) ^b	29.5		
2'''	5.37 (<i>dddd</i> , 8.3, 7.3, 3.6, 1.3)	124.6		
3'''	-	133.3		
4'''	1.76 (s)	18.1		
5'''	1.76 (s)	26.2		
1''''	5.32 (s)	63.3		
2''''	-	143.9		
3''''	8.09 (s)	127.2		
4''''	5.02 (s)	54.7		
5''''	-	172.9		
5-OH	-	-		

^{a,b}Partially overlapping signals.

Anti-Cholinesterase Activities

Evaluation of anti-ChE activity by samples was measured by a microplate assay based on Ellman'man method with modification. In brief, 140 μ l of 10 mM sodium phosphate buffer (pH 8.0), 20 μ l of solution of BuChE (0.2 units/mL in 10 mM sodium phosphate buffer, pH 8.0) and 20 μ l of test compound solution dissolved in 80% methanol (a final concentration of 0.1 mg/mL) were mixed in 96-well plates and the plates were immediately shaken speed for 10 min.

The reaction was stated by adding 20 µl of mixture solution of 5 mM 5,5′-dithiobis-(2-nitrobenzoic acid) (DTNB) in 10 mM sodium phosphate buffer (pH 8.0), containing 0.1% bovine serum albumin (BSA) and 5 mM S-butyrylthiocholine iodide (BTCI) in 10 mM sodium phosphate buffer, pH 8.0 (5:1). The hydrolysis of butyryltriocholine was monitored at 405 nm after 5 minutes of incubation at room temperature. Percentage of inhibition was calculated by comparing the rate of enzymatic hydrolysis of BTCI for the sample that of blank (80% methanol in buffer). Galantamine was used as a reference standard. Every experiment was done in triplicate.

Table 40 Anti-cholinesterase Activities of Some Compounds Isolated from *D. scandens*

Compound	Butyrylcholinesterase
	IC_{50} (μ M) \pm S.D.
1	27.20 ± 0.55
7	1.44 ± 0.04
8	2.19 ± 0.10
9	177.20 ± 29.57
28	Inactive
44	19.14 ± 3.19
51	Inactive
Galantamine	3.10 ± 0.02

Data are the average of 3 independent experiments, given as IC_{50} values in $\mu M \pm S.D.$; Inactive at 0.1 mg/ml; Galantamine is the reference drug.

Table 41 Anti-cholinesterase Activities of Modified Analogues

Compound	$\frac{\text{Butyrylcholinesterase}}{\text{IC}_{50}\left(\mu\text{M}\right)\pm\text{S.D.}}$
4	6.07 ± 0.52
25	16.04 ± 0.89
26	Inactive
27	54.60 ± 5.75
28	55.56 ± 0.21
29	Inactive
30	Inactive
31	31.78 ± 8.40
32	27.44 ± 0.95
3	12.58 ± 0.13
4	62.98 ± 11.05
5	Inactive
6	2.53 ± 0.06
7	61.34 ± 3.22
38	0.64 ± 0.01
39	6.64 ± 0.39
10	4.73 ± 0.10
1	177.47 ± 31.26
2	Inactive
13	62.28 ± 8.24
4	10.31 ± 3.22
5	Inactive
16	Inactive
7	7.83 ± 0.73

Table 41 (continued)

Compound	Butyrylcholinesterase
	IC_{50} (μ M) \pm S.D.
148	28.15 ± 3.29
149	146.45 ± 14.86
150	7.48 ± 0.97
151	Inactive
152	Inactive
153	Inactive
155	Inactive
Galantamine	3.10 ± 0.02

Data are the average of 3 independent experiments, given as IC_{50} values in $\mu M \pm S.D.$; Inactive at 0.1 mg/ml; Galantamine is the reference drug.

CHAPTER 3

RESULTS AND DISCUSSION

Chemical Constituents of *Derris scandens*

Investigation of the stems of *Derris scandens* Benth. resulted in the isolation of seven compounds. These included derrisisoflavone A (1), 5,7,4′-trihydroxy-6,8-diprenylisoflavone (7), lupalbienin (8), scandinone (9), scanderone (28), osajin (44) and scandenin (51).

Derrisisoflavone A (1)

Compound 1 was obtained as yellow amorphous solid. The IR absorption bands indicated the presence of hydroxyl group (3162 cm⁻¹), conjugated carbonyl group (1630 cm⁻¹) and aromatic nucleus (1607 and 1583 cm⁻¹). The electrospray ionization mass spectrum (ESIMS) showed the [M-H]⁻ peak at m/z 419, corresponding to the molecular formula of $C_{26}H_{28}O_5$. The ¹H- and ¹³C-NMR data of 1 (CDCl₃, Table 11) showed a typical signal at δ 7.82 (1H, s, H-

2) and 13 C-NMR signals (Table 11) at δ 150.7 (C-2), 126.7 (C-3) and 176.1 (C-4) were typical of an isoflavone. The presence of two symmetrical doublets (J = 7.3 Hz) at δ 7.30 and 6.83 corresponding to four protons on the *para*-substituted benzene of ring B. Furthermore, the 1 H-NMR spectrum showed two isoprenyl moieties attached to C-6 and C-8 at δ 1.79 (6H, s, H-4", 4"'), 1.70 (3H, s, H-5") and 1.69 (3H, s, H-5"'), two methine signals at δ 5.18 (1H, br t, J = 7.2 Hz, H-2") and 5.17 (1H, br t, J = 7.7 Hz, H-2"'), two methylene signals at δ 3.49 (2H, br d, J = 7.7 Hz, H-1"') and 3.46 (2H, br d, J = 7.2 Hz, H-1"). The methoxyl group at δ 3.77 were placed at position C-5 from HMBC correlations. The spectroscopic data led to the identification of 1 as derrisisoflavone A. The structure of this compound was confirmed by comparison of spectroscopic data with those of the literature values.²

5,7,4'-Trihydroxy-6,8-diprenylisoflavone (7)

Compound 7 was obtained as yellow amorphous solid. The IR spectrum indicated the presence of hydroxyl group (3347 cm⁻¹), conjugated carbonyl group (1643 cm⁻¹) and aromatic nucleus (1611 and 1557 cm⁻¹). The ESIMS showed [M-H]⁻ at m/z 405, corresponding to the molecular formula of $C_{25}H_{26}O_5$. The ¹H- and ¹³C-NMR feature of 7 (CDCl₃, Table 12) were similar to those of derrisisoflavone A (1), the significant difference of which was the absence of the methoxyl signal and the presence of chelated hydroxyl signal at δ 13.08 (1H, s). The structure of this compound was confirmed by comparison of spectroscopic data with those of the literature values. Compound 7 was therefore concluded to be 5,7,4'-trihydroxy-6,8-diprenylisoflavone.

Lupalbigenin (8)

Compound **8** was obtained as pale yellow amorphous solid. The IR spectrum indicated the presence of hydroxyl group (3244 cm⁻¹), conjugated carbonyl group (1652 cm⁻¹) and aromatic nucleus (1618 and 1559 cm⁻¹). The ESIMS showed [M-H]⁻ at m/z 405, corresponding to the molecular formula of $C_{25}H_{26}O_5$. The ¹H- and ¹³C-NMR spectra of **8** (CDCl₃+3 drops of CD₃OD, Table 13) showed similar patterns to those of 5,7,4'-trihydroxy-6,8-diprenylisoflavone (7). This difference could only be due to the attachment of the second isoprenyl moiety at C-3', not at the C-8 position as that of 7. The postulation was supported by the HMBC correlations. The structure of this compound was confirmed by comparison of spectroscopic data with those of the literature values. ² Compound **8** was therefore concluded to be lupalbigenin.

Scandinone (9)

Compound **9** was obtained as yellow amorphous solid. The IR spectrum indicated the presence of hydroxyl group (3369 cm⁻¹), conjugated carbonyl group (1627 cm⁻¹) and aromatic nucleus (1606 and 1571 cm⁻¹). The ESIMS showed [2M+Na]⁺ at m/z 859, corresponding to the molecular formula of $C_{26}H_{26}O_5$. The ¹H- and ¹³C-NMR spectra of **9** (CDCl₃+ 2 drops of CD₃OD, Table 14) showed similar patterns to those of **1**, the significant difference of which was the absence of one isoprenyl signal and the presence of dimethylchromene ring which was determined from the resonance of two methyl groups at δ 1.46 (2×3H, s, H-4", H-5") and two cis-olefinic protons at δ 5.63 (1H, d, d = 10.0 Hz, H-2") and 6.74 (1H, d, d = 10.0 Hz, H-1"). The location of dimethylchromene ring on C-8 (δ 105.8) and its ether linkage on C-7 (δ 155.9) of ring B was confirmed by HMBC, in which olefinic proton 1" was correlated to C-8 and C-7. The structure of this compound was confirmed by comparison of spectroscopic data with those of the literature values. Compound **9** was therefore concluded to be scandinone.

Scanderone (28)

Compound **28** was obtained as yellow amorphous solid. The IR spectrum indicated the presence of hydroxyl group (3333 cm⁻¹), conjugated carbonyl group (1649 cm⁻¹) and aromatic nucleus (1617 and 1570 cm⁻¹). The ESIMS showed [M-H] at m/z 403, corresponding to the molecular formula of $C_{25}H_{24}O_5$. The ¹H- and ¹³C-NMR feature of **28** (CDCl₃ + 2 drops of CD₃OD, Table 15) were similar to those of scandinone (**9**), the significant difference of which was the prenyl unit placed at C-3', whereas the correlations of H-1''' to 2' and 4' were observed in the HMBC spectrum. In addition, in the ¹H-NMR spectrum the absence of the methoxyl signal and the presence of chelated OH signal (δ 13.21) were noted. The structure of this compound was confirmed by comparison of spectroscopic data with those of the literature values. ⁴ Compound **28** was therefore concluded to be scanderone.

Osajin (44)

Compound **44** was obtained as yellow amorphous solid. The IR spectrum indicated the presence of hydroxyl group (3414 cm⁻¹), conjugated carbonyl group (1642 cm⁻¹) and aromatic nucleus (1617, 1572 and 1513 cm⁻¹). The ESIMS showed [M-H]⁻ at m/z 403, corresponding to the molecular formula of $C_{25}H_{24}O_5$. The ¹H- and ¹³C-NMR feature of **44** (CDCl₃, Table 17) showed similar pattern of those of scandinone (**9**). The significant difference was the absence of the methoxyl group and the presence of chelated hydroxyl group at δ 13.00 (1H, s). From the spectroscopic data, compound **44** was therefore concluded to be osajin. This compound was identified by comparison of spectroscopic data with the literature values. ¹⁹

Scandenin (51)

Compound **51** was obtained as white amorphous solid. The IR spectrum indicated the presence of hydroxyl group (3216 cm⁻¹), unsaturated ketone (1679 cm⁻¹) and aromatic nucleus (1614, 1588 and 1517 cm⁻¹). The ESIMS showed [M-H]⁻ at m/z 433, corresponding to the molecular formula of $C_{26}H_{26}O_6$. The ¹H- and ¹³C-NMR features of **51** (CDCl₃, Table 18) were similar to those of scandinone (**9**). The significant differences were the absence of the olefinic proton at the position H-2 and the presence of an ester carbonyl at δ 163.0 (C-2). From the spectroscopic data, compound **51** was therefore concluded to be scandenin. This compound was identified by comparison of spectroscopic data with the literature values.²⁰

Chemical Modification

Lupalbigenin (8), the major component of the ethyl acetate extract, and derrisisoflavone A (1) and osajin (44), the minor components of the ethyl acetate extract, were subjected to structural modification. The synthezied analogues included derrisisoflyone A 7-O-acetate (124), derrisisoflayone A 4'-O-acetate (125), derrisisoflavone A 7,4'-di-O-acetate (126), lupalbigenin 7-O-acetate (127), lupalbigenin 4'-O-acetate (128), lupalbigenin 7,4'-di-Oacetate (129), osajin 4'-O-acetate (130), derrisisoflavone A 7-O-methyl ether (131), derrisisoflavone A 4'-O-methyl ether (132), derrisisoflavone A 7,4'-di-O-methyl ether (133), lupalbigenin 7-O-methyl ether (134), lupalbigenin 7,4'di-O-methyl ether (135), 4'-O-methylosajin (43), tetrahydroderrisisoflavone A (136), hexahydroderrisisoflavone A (137), dihydrolupalbigenin (138), tetrahydrolupalbigenin (139), hexahydrolupalbigenin (140), tetrahydroosajin (141), hexahydroosajin (142), tetrahydrolupalbigenin 7-O-methyl ether (143), derrisisoflavone A 7-O-propanoate (144), derrisisoflavone A 4'-O-propanoate (145), derrisisoflavone A 7,4'-di-O-propanoate (146), 5'-nitrolupalbigenin (147), 2", 3"'-epoxylupalbigenin (148), 2", 3", 2"', 3"'-diepoxylupalbigenin (149), lupalbigenin 7-O-benzoate (150), lupalbigenin 7,4'-di-O-benzoate (151), 7-O-propargyllupalbigenin (152), 7,4'-di-O-propargyllupalbigenin (153) and 7-*O*-[1''''-(carboxymethyl)-1'''',*H*-3'''',4'''',5''''-triazole]lupalbigenin (155).

Acetylation of Derrisisoflavone A (1)

124;
$$R_1 = Ac$$
, $R_2 = H$
125; $R_1 = H$, $R_2 = Ac$
126; $R_1 = R_2 = Ac$

In order to synthesize acetate analogues of derrisisoflavone A (1) for biological evaluation, compound 1 was reacted with acetic anhydride in pyridine at room temperature to give derrisisoflavone A 7-*O*-acetate (124), derrisisoflavone A 4'-*O*-acetate (125) and derrisisoflavone A 7,4'-di-*O*-acetate (126) in 14, 3 and 44% yields, respectively.

Compound **124** was obtained as yellow amorphous solid. The IR spectrum indicated the presence of hydroxyl group (3176 cm⁻¹), acetate ester group (1767 cm⁻¹), conjugated ketone group (1625 cm⁻¹) and aromatic nucleus (1610, 1584 and 1515 cm⁻¹). The HR-TOFMS (positive ion electrospray, ESI⁺) showed [M+Na]⁺ at m/z 485.1931, corresponding to the molecular formula of $C_{28}H_{30}O_6$. The ¹H- and ¹³C-NMR spectral data (CDCl₃, Table 19) of compound **124** were similar to that of compound **1**. Comparison of ¹H-NMR spectrum of **124** with that of **1** indicated that the significant differences were the presence of acetyl signal at δ 2.33 (3H, s, 7-OAc) and the down-field shift of C-6 and C-8 signals at δ 126.1 and 119.7, respectively, and up-field

shift of the C-7 signal at δ 151.7. On the basis of the above data, the structure **124** was concluded as derrisisoflavone A 7-*O*-acetate.

Compound **125** was obtained as yellow amorphous solid. The IR spectrum indicated the presence of hydroxyl group (3319 cm⁻¹), acetate ester group (1760 cm⁻¹), conjugated carbonyl group (1633 cm⁻¹) and aromatic nucleus (1585 cm⁻¹). The HR-TOFMS (ESI⁺) showed [M+Na]⁺ at m/z 485.1933, corresponding to the molecular formula of $C_{28}H_{30}O_6$. The ¹H- and ¹³C-NMR spectral data (CDCl₃, Table 19) of compound **125** were similar to that of compound **1**. Comparison of ¹H-NMR spectrum of **125** with that of **1** indicated that the significant differences were the presence of acetyl signal at δ 2.29 (3H, s, 4'-OAc) and the down-field shift of H-2', 6' (δ 7.55), H-3', 5' (δ 7.12), C-3', 5' (δ 121.5) and up-field shift of C-4' at δ 150.4. On the basis of the above data, the structure **125** was concluded as derrisisoflavone A 4'-O-acetate.

Compound **126** was obtained as yellow amorphous solid. The IR spectrum indicated the presence of acetate ester group (1766 and 1754cm⁻¹), conjugated carbonyl group (1644 cm⁻¹) and aromatic nucleus (1586 cm⁻¹). The HR-TOFMS (ESI⁺) showed [M+Na]⁺ at m/z 527.2039, corresponding to the molecular formula of $C_{30}H_{32}O_7$. The ¹H- and ¹³C-NMR spectral data (CDCl₃, Table 20) of compound **126** were similar to that of compound **1**. Comparison of ¹H-NMR spectrum of **126** with that of **1** indicated that the significant differences were the presence of acetyl signals at δ 2.32 (3H, s, 7-OAc) and δ 2.91 (3H, s, 4'-OAc) which indicated the presence of two acetyl groups and the down-field shift of H-2', 6' (δ 7.54), H-3', 5' (δ 7.13) C-6 (δ 126.2), C-8 (δ

119.7) and C-3', 5' (δ 121.6) and up-field shift of C-7 and C-4' at δ 151.8 and 150.6, respectively. On the basis of the above data, the structure **126** was concluded as derrisisoflavone A 7,4'-di-O-acetate.

Acetylation of Lupalbigenin (8)

In order to synthesize acetate analogues of lupalbigenin (8) for biological evaluation, compound 8 was reacted with acetic anhydride in pyridine at room temperature to give lupalbigenin 7-*O*-acetate (127), lupalbigenin 4'-*O*-acetate (128) and lupalbigenin 7,4'-di-*O*-acetate (129) in 33, 10 and 57% yields, respectively.

Compound **127** was obtained as white amorphous solid. The IR spectrum indicated the presence of hydroxyl group (3488 cm⁻¹), acetate ester group (1734 cm⁻¹), conjugated carbonyl group (1621 cm⁻¹) and aromatic nucleus (1592 cm⁻¹). The HR-TOFMS (ESI⁺) showed [M+Na]⁺ at m/z 471.1776, corresponding to the molecular formula of $C_{27}H_{28}O_6$. The ¹H- and ¹³C-NMR spectral data (CDCl₃, Table 21) of compound **127** were similar to that of compound **8**. Comparison of ¹H-NMR spectrum of **127** with that of **8** indicated that the significant differences were the presence of acetyl signal at δ 2.33 (3H, s, 7-OAc) and the down-field shift of H-8 (δ 6.69), C-6 (δ 117.3)

and C-8 (δ 101.1) and the up-field of C-7 at δ 154.1. On the basis of the above data, the structure **127** was concluded as lupalbigenin 7-*O*-acetate.

Compound **128** was obtained as white amorphous solid. The IR spectrum indicated the presence of hydroxyl group (3193 cm⁻¹), acetate ester group (1733 cm⁻¹), conjugated carbonyl group (1642 cm⁻¹) and aromatic nucleus (1618 cm⁻¹). The HR-TOFMS (ESI⁺) showed [M+Na]⁺ at m/z 471.1767, corresponding to the molecular formula of $C_{27}H_{28}O_6$. The ¹H- and ¹³C-NMR spectral data (CDCl₃, Table 21) of compound **128** were similar to that of compound **8**. Comparison of ¹H-NMR spectrum of **128** with that of **8** indicated that the significant differences were the presence of acetyl signal at δ 2.31 (3H, s, 4'-OAc) and the down-field shift of H-2' (δ 7.34), H-5' (δ 7.06), H-6' (δ 7.35), C-3' (δ 133.4) and C-5' (δ 122.5) and the up-field shift of C-4' at δ 149.0. On the basis of the above data, the structure **128** was concluded as lupalbigenin 4'-*O*-acetate.

Compound **129** was obtained as white amorphous solid. The IR spectrum indicated the presence of hydroxyl group (3081 cm⁻¹), acetate ester group (1748 cm⁻¹), conjugated carbonyl group (1626 cm⁻¹) and aromatic nucleus (1593 cm⁻¹). The HR-TOFMS (positive ion electrospray, ESI⁺) showed [M+Na]⁺ at m/z 513.1879, corresponding to the molecular formula of $C_{29}H_{30}O_7$. The ¹H- and ¹³C-NMR spectral data (CDCl₃, Table 22) of compound **129** were similar to that of compound **8**. Comparison of ¹H-NMR spectrum of **129** with that of **8** indicated that the significant differences were the presence of acetyl signals at δ 2.33 (3H, s, 7-OAc) and δ 2.31 (3H, s, 4'-OAc) which indicated the presence of two acetyl groups and the down-field

shift of H-8 (δ 6.71), H-2' (δ 7.34), H-5' (δ 7.08), H-6' (δ 7.35), C-6 (δ 117.5), C-8 (δ 101.2), C-3' (δ 133.9) and C-5' (δ 122.5) and the up-field shift of C-7 and C-4' signals at δ 154.6 and 149.1, respectively. On the basis of the above data, the structure **129** was concluded as lupalbigenin 7,4'-di-*O*-acetate.

Acetylation of Osajin (44)

In order to synthesize acetate analogue **130** of osajin **(44)** for biological evaluation, compound **44** was reacted with acetic anhydride in pyridine at room temperature to give osajin 4'-O-acetate **(130)** in 95% yield.

Compound **130** was obtained as yellow amorphous solid. The IR spectrum indicated the presence of hydroxyl group (3341 cm $^{-1}$), acetate ester group (1750 cm $^{-1}$), conjugated carbonyl group (1651 cm $^{-1}$) and aromatic nucleus (1615, 1573 and 1508 cm $^{-1}$). The HR-TOFMS (ESI $^{+}$) showed [M+Na] $^{+}$ at m/z 469.1633, corresponding to the molecular formula of $C_{27}H_{26}O_6$. The 1 H- and 13 C-NMR spectral data (CDCl $_3$, Table 23) of compound **130** were similar to that of compound **44**. Comparison of 1 H-NMR spectrum of **130** with that of **44** indicated that the significant differences were

the presence of acetyl signal at δ 2.30 (3H, s, 4'-OAc) and the down-field shift of H-2', 6' (δ 7.53), H-3', 5' (δ 7.15) and C-3', 5' (δ 121.8) and the up-field shift of C-4' signal at δ 150.7. On the basis of the above data, the structure **130** was concluded as osajin 4'-O-acetate.

Methylation of Derrisisoflavone A (1)

$$4^{"}$$
 $3^{"}$ $5^{"}$ 131 ; $R_1 = CH_3$, $R_2 = H$ 132 ; $R_1 = H$, $R_2 = CH_3$ 133 ; $R_1 = R_2 = CH_3$ 133 ; $R_1 = R_2 = CH_3$

In order to synthesize methyl ether analogues of derrisisoflavone A (1) for biological evaluation, compound 1 was reacted with methyl iodide and sodium carbonate in acetone at 40°C to give derrisisoflavone A 7-*O*-methyl ether (131), derrisisoflavone A 4'-*O*-methyl ether (132) and derrisisoflavone A 7,4'-di-*O*-methyl ether (133) in 34, 18 and 19% yields, respectively.

Compound **131** was obtained as yellow amorphous solid. The IR spectrum indicated the presence of hydroxyl group (3362 cm⁻¹), conjugated carbonyl group (1634 cm⁻¹) and aromatic nucleus (1608, 1587 and 1516 cm⁻¹). The HR-TOFMS (ESI⁺) spectrum, which showed [M+Na]⁺ at m/z 457.1959, corresponding to the molecular formula of $C_{27}H_{30}O_5$. The ¹H- and ¹³C-NMR spectral data (CDCl₃, Table 24) of compound **131** were similar to that of

compound **1**. Comparison of 1 H-NMR spectrum of **131** with that of **1** indicated that the significant differences were the presence of methoxyl signal at δ 3.84 (3H, s, 7-OCH₃) and the down-field shift of C-6 and C-8 signals at δ 127.1 and 119.9, respectively, and up-field shift of the C-7 signal at δ 156.9. On the basis of the above data, the structure **131** was concluded as derrissioflavone A 7-O-methyl ether.

Compound **132** was obtained as yellow amorphous solid. The IR spectrum indicated the presence of hydroxyl group (3344 cm⁻¹), conjugated carbonyl group (1633 cm⁻¹) and aromatic nucleus (1607, 1587 and 1512 cm⁻¹). The HR-TOFMS (ESI⁺) showed [M+Na]⁺ at m/z 457.1961, corresponding to the molecular formula of $C_{27}H_{30}O_5$. The ¹H- and ¹³C-NMR spectral data (CDCl₃, Table 24) of compound **132** were similar to that of compound **1**. Comparison of ¹H-NMR spectrum of **132** with that of **1** indicated that the significant differences were the presence of methoxyl signal at δ 3.80 (3H, s, 4'-OCH₃) and the down-field shift of H-2', 6' (δ 7.45), H-3', 5' (δ 6.94) and C-4' (δ 159.4). On the basis of the above data, the structure **132** was concluded as derrissioflavone A 4'-O-methyl ether.

Compound **133** was obtained as yellow amorphous solid. The IR spectrum indicated the presence of conjugated carbonyl group (1638 cm⁻¹) and aromatic nucleus (1608, 1582 and 1512 cm⁻¹). The HR-TOFMS (ESI⁺) showed [M+Na]⁺ at m/z 471.2113, corresponding to the molecular formula of $C_{28}H_{32}O_5$. The ¹H- and ¹³C-NMR spectral data (CDCl₃, Table 25) of compound **133** were similar to that of compound **1**. Comparison of ¹H-NMR spectrum of **133** with that of **1** indicated that the significant differences were

the presence of methoxyl signals at δ 3.78 (3H, s, 7-OCH₃) and δ 3.81 (3H, s, 4'-OCH₃) which indicated the presence of two methoxyl groups and the downfield shift of H-2', 6' (δ 7.45), H-3', 5' (δ 6.94), C-6 (δ 126.3), C-7 (δ 161.0), C-8 (δ 119.8) and C-4' (δ 159.5). On the basis of the above data, the structure **133** was concluded as derrissioflavone A 7,4'-di-O-methyl ether.

Methylation of Lupalbigenin (8)

$$R_{1}O_{7} = R_{1}O_{1} = CH_{3}, R_{2} = H$$

$$A'''_{3''} = CH_{3} = CH_{3}$$

$$R_{1} = CH_{3}, R_{2} = H$$

$$R_{1}O_{7} = R_{2} = CH_{3}$$

$$R_{1} = R_{2} = CH_{3}$$

$$R_{1} = R_{2} = CH_{3}$$

In order to synthesize methyl ether analogues of lupalbigenin (8) for biological evaluation, compound 8 was reacted with methyl iodide and sodium carbonate in acetone at 40°C to give lupalbigenin 7-*O*-methyl ether (134) and lupalbigenin 7,4′-di-*O*-methyl ether (135) in 71 and 26% yields, respectively.

Compound **134** was obtained as yellow amorphous solid. The IR spectrum indicated the presence of hydroxyl group (3326 cm $^{-1}$), conjugated carbonyl group (1649 cm $^{-1}$) and aromatic nucleus (1613 and 1573 cm $^{-1}$). The HR-TOFMS (ESI $^{+}$) showed [M+Na] $^{+}$ at m/z 443.1808, corresponding to the molecular formula of $C_{26}H_{28}O_5$. The 1 H- and 13 C-NMR spectral data (CDCl₃, Table 26) of compound **134** were similar to that of compound **8**. Comparison of 1 H-NMR spectrum of **134** with that of **8** indicated that the significant

differences were the presence of methoxyl signal at δ 3.87 (3H, s, 7-OCH₃) and the down-field shift of C-6 (δ 113.0) and C-7 (δ 163.2) and the up-field shift of C-8 signal at δ 89.4. On the basis of the above data, the structure **134** was concluded as lupalbigenin 7-*O*-methyl ether.

Compound **135** was obtained as yellow amorphous solid. The IR spectrum indicated the presence of hydroxyl group (3347 cm⁻¹), conjugated carbonyl group (1644 cm⁻¹) and aromatic nucleus (1608, 1568 and 1501 cm⁻¹). The HR-TOFMS (ESI⁺) showed [M+Na]⁺ at m/z 457.1983, corresponding to the molecular formula of $C_{27}H_{30}O_5$. The ¹H- and ¹³C-NMR spectral data (CDCl₃, Table 26) of compound **135** were similar to that of compound **8**. Comparison of ¹H-NMR spectrum of **135** with that of **8** indicated that the significant differences were the presence of methoxyl signals at δ 3.88 (3H, s, 7,-OCH₃) and δ 3.84 (3H, s, 4'-OCH₃) which indicated the presence of two methoxyl groups and the down-field shift of H-6' (δ 7.33), C-6 (δ 113.0), C-7 (δ 163.2), C-3' (δ 130.4), C-4' (δ 157.5) and the up-field shift of C-8 and C-5' signals at δ 89.4 and 110.3, respectively. On the basis of the above data, the structure **135** was concluded as lupalbigenin 7,4'-di-*O*-methyl ether.

Methylation of Osajin (44)

In order to synthesize methyl ether analogues **43** of osajin (**44**) for biological evaluation, compound **44** was reacted with methyl iodide and sodium carbonate in acetone at 40°C to give 4'-*O*-methylosajin (**43**) in 84% yield.²¹

Compound **43** was obtained as yellow amorphous solid. The IR spectrum indicated the presence of hydroxyl group (3321 cm⁻¹), conjugated carbonyl group (1650 cm⁻¹) and aromatic nucleus (1614, 1567 and 1510 cm⁻¹). The HR-TOFMS (ESI⁺) showed [M+Na]⁺ at m/z 441.1645, corresponding to the molecular formula of $C_{26}H_{26}O_5$. The ¹H- and ¹³C-NMR spectral data (CDCl₃, Table 16) of compound **43** were similar to that of compound **44**. Comparison of ¹H-NMR spectrum of **43** with that of **44** indicated that the significant differences were the presence of methoxyl signal at δ 3.82 (3H, s, 4'-OCH₃) and the down-field shift of H-2', δ ' (δ 7.44), H-3', δ ' (δ 6.96) and C-4' (δ 159.7). On the basis of the above data, the structure **43** was concluded as 4'-O-methylosajin.

Catalytic of Hydrogenation of Derrisisoflavone A (1)

Hydrogenation of derrisisoflavone A (1) with 10% Pd-C in EtOH as a catalyst at atmospheric pressure gave tetrahydro analogue 136 and the hexahydro analogue 137 in 49 and 45 % yields, respectively.

Compound **136** was obtained as yellow amorphous solid. The IR spectrum indicated the presence of hydroxyl group (3173 cm⁻¹), conjugated carbonyl group (1631 cm⁻¹) and aromatic nucleus (1607, 1586 and 1516 cm⁻¹). The HR-TOFMS (ESI⁺) showed [M+Na]⁺ at m/z 447.2145, corresponding to the molecular formula of $C_{26}H_{32}O_5$. The ¹H- and ¹³C-NMR spectrum (CDCl₃ + 2 drops of CD₃OD, Table 27) of compound **136** were similar to that of derrisisoflavone A (**1**). The prenyl group were converted into isopeutyl group and the presence of aliphatic proton signals at δ 1.36-1.44 (2×2H, m, H-2", H-2"'), 1.58-1.65 (2×1H, m, H-3", H-3"'), 2.67 (2H, dd, J = 8.2, 3.0 Hz, H-1") and 2.75 (2H, dd, J = 8.0, 2.7 Hz, H-1"'). On the basis of the above data, the structure **136** was concluded as tetrahydroderrisisoflavone A.

Compound **137** was obtained as yellow amorphous solid. The IR spectrum indicated the presence of hydroxyl group (3339 cm⁻¹) and aromatic nucleus (1581 and 1517 cm⁻¹). The HR-TOFMS (ESI⁺) showed [M+Na]⁺ at m/z 449.2294, corresponding to the molecular formula of $C_{26}H_{34}O_5$. The ¹H-and ¹³C-NMR spectral data (CDCl₃ + 2 drops of CD₃OD, Table 27) of compound **137** were similar to that of tetrahydroderrisisoflavone A (**136**). The significant differences were the absence of the olefinic signal of H-2 and the presence of aliphatic protons at δ 4.51 (1H, dd, J = 11.2, 5.2 Hz, H-2 β), 4.49 (1H, dd, J = 11.2, 9.0 Hz, H-2 α) and 3.68 (1H, br dd, J = 9.0, 5.2 Hz, H-3). On the basis of the above data, the structure of **137** was concluded as hexahydroderrisisoflavone A.

Catalytic of Hydrogenation of Lupalbigenin (8)

Hydrogenation of lupalbigenin (8) with 10% Pd-C in EtOH as a catalyst at atmospheric pressure gave the dihydro analogue 138, tetrahydro analogue 139 and hexahydro analoge 140 in 9, 47 and 26 % yields, respectively.

Compound **138** was obtained as yellow amorphous solid. The IR spectrum indicated the presence of hydroxyl group (3263 cm⁻¹), conjugated carbonyl group (1651 cm⁻¹) and aromatic nucleus (1616, 1552 and 1506 cm⁻¹). The HR-TOFMS (ESI⁺) showed [M+Na]⁺ at m/z 431.1829, corresponding to the molecular formula of $C_{32}H_{36}O_7$. The ¹H- and ¹³C-NMR spectra (CDCl₃, Table 28) of compound **138** were similar to those of lupalbigenin (**8**). The prenyl group were converted into isopeutyl group and the presence of aliphatic proton signals at δ 1.47-1.53 (2H, m, H-2"'), 1.55-1.65 (1H, m, H-

3''') and δ 2.61 (2H, t, J = 8.2 Hz, H-1'''). On the basis of the above data, the structure **138** was concluded as dihydrolupalbegenin.

Compound **139** was obtained as yellow amorphous solid. The IR spectrum indicated the presence of hydroxyl group (3261 cm⁻¹), conjugated carbonyl group (1651 cm⁻¹) and aromatic nucleus (1620, 1609 and 1560 cm⁻¹). The HR-TOFMS (ESI⁺) showed [M+Na]⁺ at m/z 433.1947, corresponding to the molecular formula of $C_{25}H_{30}O_5$. The ¹H- and ¹³C-NMR spectra (CDCl₃, Table 28) of compound **139** were similar to those of lupalbigenin (**8**). The prenyl group were converted into isopeutyl group and the presence of aliphatic proton signals at δ 1.36-1.40 (2H, m, H-2"), 1.44-1.50 (2H, m, H-2"), 1.52-1.63 (2×1H, m, H-3", H-3"), 2.63 (2H, dd, J = 7.9, 2.4 Hz, H-1") and 2.59 (2H, dd, J = 8.2, 2.4 Hz, H-1"). On the basis of the above data, the structure of **139** was concluded as tetrahydrolupalbigenin.

Compound **140** was obtained as yellow amorphous solid. The IR spectrum indicated the presence of hydroxyl group (3254 cm⁻¹) and aromatic nucleus (1616, 1551 and 1504 cm⁻¹). The HR-TOFMS (ESI⁺) showed [M+Na]⁺ at m/z 435.2145, corresponding to the molecular formula of $C_{25}H_{32}O_5$. The ¹H- and ¹³C-NMR spectrum (CDCl₃, Table 29) of compound **140** were similar to that of tetrahydrolupalbigenin (**139**). The significant differences were the absence of the olefinic signal of H-2 and the presence of aliphatic proton signals at δ 4.52 (1H, dd, J = 11.0, 5.3 Hz, H-2 β), 4.47 (1H, dd, J = 11.0, 9.3 Hz, H-2 α) and δ 3.85 (1H, dd, J = 9.3, 5.3 Hz, H-3). On the basis of the above data, the structure of **140** was concluded as hexahydrolupalbigenin.

Catalytic of Hydrogenation of Osajin (44)

Hydrogenation of osajin (44) with 10% Pd-C in EtOH as a catalyst at atmospheric pressure gave the tetrahydro analogue 141 and hexahydro analogue 142 in 46 and 41 % yields, respectively.

Compound **141** was obtained as yellow amorphous solid. The IR spectrum indicated the presence of hydroxyl group (3375 cm⁻¹), conjugated carbonyl group (1643 cm⁻¹) and aromatic nucleus (1611, 1569 and 1515 cm⁻¹). The HR-TOFMS (ESI⁺) showed [M+Na]⁺ at m/z 431.1798, corresponding to the molecular formula of $C_{25}H_{28}O_5$. The ¹H- and ¹³C-NMR spectral data (CDCl₃, Table 30) of compound **141** were similar to those of compound **44**. The prenyl group and pyran group were converted into isopeutyl group and dihydropyran group and the presence of aliphatic proton signals at δ 1.30-1.39 (2H, partially overlapping signals, H-2") and 1.51-1.60 (1H, m, H-3"), 2.68 (2H, br t, J = 7.9 Hz, H-1"), 2.72 (2H, t, J = 6.8 Hz, H-1") and 1.80 (2H, t, J = 6.8 Hz, H-2"). On the basis of the above data, the structure of **141** was concluded as tetrahydroosajin.

Compound **142** was obtained as yellow amorphous solid. The IR spectrum indicated the presence of hydroxyl group (3431 cm⁻¹) and aromatic nucleus (1604, 1589 and 1519 cm⁻¹). The HR-TOFMS (ESI⁺) showed [M+Na]⁺ at m/z 433.1983, corresponding to the molecular formula of $C_{25}H_{30}O_5$. The ¹H- and ¹³C-NMR spectral data (CDCl₃, Table 30) of compound **142** were similar to those of compound **141**. The significant differences were the absence of the olefinic signal of H-2 and the presence of aliphatic proton signals at δ 4.52 (1H, dd, J = 11.3, 5.0 Hz, H-2 β), 4.43 (1H, dd, J = 11.3, 8.5 Hz, H-2 α) and δ 3.84 (1H, dd, J = 8.5, 5.0 Hz, H-3). The d-hydroxyphenyl group at C-3 was in the more stable equatorial orientation. On the basis of the above data, the structure of **142** was concluded as hexahydroosajin.

Catalytic of Hydrogenation of Lupalbigenin 7-O-methyl ether (134)

Hydrogenation of lupalbigenin 7-O-methyl ether (134) with 10% Pd-C in EtOH as a catalyst at atmospheric pressure gave the tetrahydro analogue 143 in 29% yield. Compound 143 was obtained as yellow amorphous solid. The IR spectrum indicated the presence of hydroxyl group (3382 cm⁻¹), conjugated carbonyl group (1649 cm⁻¹) and aromatic nucleus (1614, 1572 and 1506 cm⁻¹). The HR-TOFMS (ESI⁺) spectrum, which showed [M+Na]⁺ at m/z 447.2138, corresponding to the molecular formula of $C_{26}H_{32}O_5$. The ¹H- and ¹³C-NMR spectral data (CDCl₃, Table 31) of compound 143 were similar to those of compound 139. The significant difference was the presence of methoxyl signal at δ 3.83 (3H, s, 7-OCH₃). On the basis of the above data, the structure of 143 was concluded as tetrahydrolupalbigenin 7-O-methyl ether.

Esterification of Derrisisoflavone A (1) with Propionic anhydride

Reaction of derrisisoflavone A (1) with propionic anhydride and pyridine in dichloromethane at room temperature gave derrisisoflavone A 7-*O*-propanoate (144), derrisisoflavone A 4'-*O*-propanoate (145) and derrisisoflavone A 7,4'-di-*O*-propanoate (146) in 14, 3 and 44% yields, respectively.

Compound **144** was obtained as yellow amorphous solid. The IR spectrum indicated the presence of hydroxyl group (3350 cm⁻¹), ester group (1758 cm⁻¹), conjugated carbonyl group (1630 cm⁻¹) and aromatic nucleus (1587 and 1512 cm⁻¹). The HR-TOFMS (ESI⁺) showed [M+Na]⁺ at m/z 499.2086, corresponding to the molecular formula of $C_{29}H_{32}O_6$. The ¹H- and ¹³C-NMR spectral data (CDCl₃, Table 32) of compound **144** were similar to those of compound **1**. The significant differences were the presence of methyl proton signal at δ 1.27 (3H, t, J = 7.6 Hz, 7-COCH₂CH₃) and methylene proton signal at δ 2.63 (2H, q, J = 7.6 Hz, 7-COCH₂CH₃) and the down-field shift of C-8 signal at δ 115.5 and up-field shift of the C-7 signal at δ 151.8. On

the basis of the above data, the structure of **144** was concluded as a derrisisoflavone A 7-*O*-propanoate.

Compound **145** was obtained as yellow amorphous solid. The IR spectrum indicated the presence of hydroxyl group (3316 cm⁻¹), ester group (1758 cm⁻¹), conjugated carbonyl group (1631 cm⁻¹) and aromatic nucleus (1583 and 1505 cm⁻¹). The HR-TOFMS (ESI⁺) spectrum, which showed [M+Na]⁺ at m/z 499.2090, corresponding to the molecular formula of $C_{29}H_{32}O_6$. The ¹H- and ¹³C-NMR spectral data (CDCl₃, Table 32) of compound **145** were similar to that of compound **1**. Comparison of ¹H-NMR spectrum of **145** with those of **1** indicated that the significant differences were the presence of methyl proton signal at δ 1.25 (3H, t, J = 7.5 Hz, 4'-COCH₂CH₃), methylene proton signal at δ 2.58 (2H, q, J = 7.5 Hz, 4'-COCH₂CH₃) and the down-field shift of H-2', 6' (δ 7.54), H-3', 5' (δ 7.12) and C-3', 5' (δ 121.5) and the up-field shift of C-4' at δ 150.6. On the basis of the above data, the structure of **145** was concluded as a derrisisoflavone A 4'-O-propanoate.

Compound **146** was obtained as yellow amorphous solid. The IR spectrum indicated the presence of ester group (1766 and 1746 cm⁻¹), conjugated carbonyl group (1644 cm⁻¹) and aromatic nucleus (1588 cm⁻¹). The HR-TOFMS (ESI⁺) spectrum, which showed [M+Na]⁺ at *m/z* 555.2357, corresponding to the molecular formula of C₃₂H₃₆O₇. The ¹H- and ¹³C-NMR spectral data (CDCl₃, Table 33) of compound **146** were similar to that of compound **1**. Comparison of ¹H-NMR spectrum of **146** with that of **1** indicated that the significant differences were the presence of methyl proton

signals at δ 1.25 (3H, t, J = 7.4 Hz, 4′-COCH₂CH₃), δ 1.27 (3H, t, J = 7.4 Hz, 7-COCH₂CH₃), methylene proton signals at δ 2.56 (2H, q, J = 7.4 Hz, 4′-COCH₂CH₃), δ 2.62 (2H, q, J = 7.4 Hz, 7-COCH₂CH₃) and the down-field shift of H-2′, 6′ (δ 7.54), H-3′, 5′ (δ 7.13), C-6 (δ 126.3), C-8 (δ 119.8) and C-3′, 5′ (δ 121.6) and the up-field shift of C-7 and C-4′ at δ 151.9 and 150.7, respectively. On the basis of the above data, the structure of **146** was concluded as a derrisisoflavone A 7,4′-di-O-propanoate.

Nitration of Lupalbigenin (8)

Reaction of lupalbigenin (**8**) with NaNO₂ in the presence H_2SO_4 in methanol gave 5'-nitrolupalbigenin (**147**) in 22% yield. Compound **147** was obtained as yellow amorphous solid. The IR spectrum indicated the presence of hydroxyl group (3355 cm⁻¹), conjugated carbonyl group (1644 cm⁻¹), aromatic nucleus (1623 and 1544 cm⁻¹) and nitro group (1571 and 1367 cm⁻¹). The HR-TOFMS (ESI⁺) showed [M+Na]⁺ at m/z 474.1485, corresponding to the molecular formula of $C_{25}H_{25}NO_7$. The ¹H- and ¹³C-NMR spectral data (CDCl₃, Table 34) of compound **147** were similar to those of compound **8**.

The significant differences were the presence of chelated hydroxyl group at δ 10.96 (1H, s, 4'-OH) and the down-field shift of the H-2' (δ 7.58), H-6' (δ 8.07), C-2' (δ 137.7), C-3' (δ 133.7) and C-5' (δ 133.1) and the up-field shift of C-6' signal at δ 7.58. On the basis of the above data, the structure of **147** was concluded as 5'-nitrolupalbigenin.

Epoxidation of Lupalbigenin (8)

In order to synthesize epoxide analogues of lupalbigenin (8) for biological evaluation, compound 8 was reacted with *meta*-chloroperbenzoic acid (*m*-CPBA) in chlorofrom at room temperature to give 2"',3"'-epoxylupalbigenin (148) and 2",3",2"',3"'-diepoxylupalbigenin (149) in 5 and 13% yields, respectively.

Compound **148** was obtained as yellow amorphous solid. The IR spectrum indicated the presence of hydroxyl group (3242 cm $^{-1}$), conjugated carbonyl group (1645 cm $^{-1}$) and aromatic nucleus (1614 and 1578 cm $^{-1}$). The HR-TOFMS (ESI $^{+}$) spectrum, which showed [M+Na] $^{+}$ at m/z 445.1618, corresponding to the molecular formula of $C_{25}H_{26}O_6$. The ^{1}H - and ^{13}C -NMR spectral data (CDCl₃, Table 35) of compound **148** were similar to that of

compound **8**. The significant differences were the absence of the olefinic signals and the presence methine proton signal at δ 3.81 (1H, br dd, 5.7, 4.5 Hz, H-2''', the methylene proton signals at δ 2.81 (1H, dd, J = 16.9, 5.7 Hz, H-1'''a) and 3.11 (1H, dd, J = 16.9, 4.5 Hz, H-1'''b). On the basis of the above data, the structure of **148** was concluded as 2''',3'''-expoylupalbigenin.

Compound **149** was obtained as yellow amorphous solid. The IR spectrum indicated the presence of hydroxyl group (3389 cm⁻¹), conjugated carbonyl group (1651 cm⁻¹) and aromatic nucleus (1614 and 1567 cm⁻¹). The HR-TOFMS (ESI⁺) spectrum, which showed [M+Na]⁺ at m/z 461.1575, corresponding to the molecular formula of $C_{25}H_{26}O_7$. The ¹H- and ¹³C-NMR spectral data (CD₃OD, Table 35) of compound **149** were similar to those of compound **8**. The significant differences were the absence of two olefinic signals and the presence methine proton signals at δ 3.84 (1H, dd, J = 5.9, 5.1 Hz, H-2") and 3.79 (1H, dd, J = 5.6, 4.8 Hz, H-2"'), the methylene proton signals at δ 2.95 (1H, dd, J = 17.2, 5.1 Hz, H-1"b), 2.71 (1H, dd, J = 17.2, 5.9 Hz, H-1"a), 3.09 (1H, dd, J = 16.8, 4.8 Hz, H-1"b) and 2.80 (1H, dd, J = 16.8, 5.6 Hz, H-1"a). On the basis of the above data, the structure of **149** was concluded as 2".3".2".3"'-diexpoylupalbigenin.

Benzoylation of Lupalbigenin (8)

In order to synthesize benzoate analogues of lupalbigenin (8) for biological evaluation, compound 8 was reacted with benzoyl chloride and pyridine in dichlorometane at room temperature to give lupalbigenin 7-*O*-benzoate (150) and lupalbigenin 7,4'-di-*O*-benzoate (151) in 7 and 52% yields, respectively.

Compound **150** was obtained as yellow amorphous solid. The IR spectrum indicated the presence of hydroxyl group (3452 cm⁻¹), benzoate carbonyl ester group (1717 cm⁻¹), conjugated carbonyl group (1641 cm⁻¹) and aromatic nucleus (1617, 1578 and 1509 cm⁻¹). The HR-TOFMS (ESI⁺) showed [M+Na]⁺ at m/z 533.1941, corresponding to the molecular formula of $C_{32}H_{30}O_6$. The ¹H- and ¹³C-NMR spectral data (CDCl₃, Table 36) of compound **150** were similar to that of compound **8**. Comparison of ¹H-NMR spectrum of **150** with that of **8** indicated that the significant differences were the presence of aromatic signals at δ 8.19 (2H, d, J = 7.7 Hz, H-3"",7""), 7.52

(2H, t, J = 7.7 Hz, H-4"",6"") and 7.66 (1H, t, J = 7.7 Hz, H-5""), the downfield shift of H-8 (δ 6.81), C-6 (δ 117.6) and C-8 (δ 101.3) and the up-field shift of C-7 signal at δ 154.8. On the basis of the above data, the structure **150** was concluded as lupalbigenin 7-O-benzoate.

Compound 151 was obtained as yellow amorphous solid. The IR spectrum indicated the presence of hydroxyl group (3062 cm⁻¹), benzoate carbonyl ester group (1750 and 1733 cm⁻¹), conjugated carbonyl group (1645 cm⁻¹) and aromatic nucleus (1619, 1582 and 1512 cm⁻¹). The HR-TOFMS (ESI⁺) spectrum, which showed [M+Na]⁺ at m/z 637.2205, corresponding to the molecular formula of C₃₁H₃₀O₅. The ¹H- and ¹³C-NMR spectral data (CDCl₃, Table 36) of compound **151** were similar to that of compound **8**. Comparison of ¹H-NMR spectrum of **151** with those of **8** indicated that the significant differences were the presence of aromatic signals at δ 8.19-8.21 (4H, overlapping signal, H-3", 7", 10", 14"), 7.54 (2H, t, J = 7.8 Hz, H-4'''', 6''''), 7.66 (1H, t, J = 7.8 Hz, H-5''''), 7.52 (2H, t, J = 7.9 Hz, H-11'''', 13'''') and 7.64 (1H, t, J = 7.9 Hz, H-12''''), the down-field shift of H-8 $(\delta 6.85)$, H-2' $(\delta 7.42)$, H-5' $(\delta 7.23)$, H-6' $(\delta 7.43)$, C-6 $(\delta 117.8)$, C-8 $(\delta$ 101.4), C-3' (δ 133.5), C-5' (δ 122.7) and the up-field shift of C-7 and C-4' signals at δ 154.7 and 149.4, respectively. On the basis of the above data, the structure of **151** was concluded as lupalbigenin 7,4'-di-O-benzoate.

Reaction of Lupalbigenin (8) with Propargyl Bromide

Reaction of lupalbigenin (8) with potassium carbonate and propargyl bromide in acetone gave 7-*O*-propargyllupalbigenin (152) and lupalbigenin 7,4'-di-*O*-dipropargyllupalbigenin (153) in 72 and 21% yields, respectively.

Compound **152** was obtained as yellow amorphous solid. The IR spectrum indicated the presence of hydroxyl group (3284 cm⁻¹), alkyne group (2126 cm⁻¹), conjugated carbonyl group (1647 cm⁻¹) and aromatic nucleus (1614 cm⁻¹). The HR-TOFMS (ESI⁺) showed [M+Na]⁺ at m/z 467.1779, corresponding to the molecular formula of $C_{28}H_{28}O_5$. The ¹H- and ¹³C-NMR spectral data (CDCl₃, Table 37) of compound **152** was similar to those of compound **8**. The significant differences were the presence of methylene proton signals at δ 4.77 (2H, d, J = 2.4 Hz, 7-OCH₂C=CH), methine proton signal at δ 2.55 (1H, t, J = 2.4 Hz, 7-OCH₂C=CH), the down-field shift of the H-8 (δ 6.50) and C-6 (δ 113.5) and the up-field shift of C-7 and C-8 signals at δ 160.9 and 90.6, respectively. On the basis of the above data, the structure of **152** was concluded as 7-*O*-propargyllupalbigenin.

Compound **153** was obtained as yellow amorphous solid. The IR spectrum indicated the presence of hydroxyl group (3292 cm⁻¹), alkyne group

(2124 cm⁻¹), conjugated carbonyl group (1647 cm⁻¹) and aromatic nucleus (1618 and 1582 cm⁻¹). The HR-TOFMS (ESI⁺) spectrum, which showed $[M+Na]^+$ at m/z 505.1914, corresponding to the molecular formula of $C_{31}H_{30}O_5$. The ¹H- and ¹³C-NMR spectral data (CDCl₃, Table 37) of compound **153** were similar to those of compound **8**. The significant differences were the presence of methylene proton signals at δ 4.76 (2H, d, J = 2.4 Hz, 7-OCH₂C=CH) and 4.72 (2H, d, J = 2.4 Hz, 4'-OCH₂C=CH), methine proton signals at δ 2.55 (1H, t, J = 2.4 Hz, 7-OCH₂C=CH) and 2.50 (1H, t, J = 2.4 Hz, 4'-OCH₂C=CH), the down-field shift of H-8 (δ 6.49), H-5' (δ 7.00), H-6' (δ 7.32), C-6 (δ 113.6) and C-3' (δ 131.1) and the up-field shift of C-7 (δ 161.0), C-8 (δ 90.7) and C-5' (δ 111.9). On the basis of the above data, the structure of **153** was concluded as 7,4'-di-O-propargyllupalbigenin.

Synthesis of 2-Azidoacetic acid (154)

Reaction of bromoacetic acid with sodium azide in water gave 2-azidoacetic acid (**154**) in 94% yield. Compound **154** was obtained as colorless liquid. The H- and C-NMR spectral data (CDCl₃, Table 38) of compound **154** showed a hydroxyl group at signal at δ 9.33 (1H, s, 3-OH) and methylene proton at δ 3.94 (2H, s, H-2). On the basis of the above data, the structure of **154** was concluded as 2-azidoacetic acid.

Click reaction of 7-*O*-Propargyllupalbigenin (152) with 2-Azidoacetic Acid (154)

Reaction of 7-*O*-propargylluaplbigenin (**152**) with 2-azidoacetic acid (**154**) in the presence of sodium ascorbate, $CuSO_4 \cdot 5H_2O$, in THF/H₂O gave 7-*O*-[1''''-(carboxymethyl)-1'''', *H*-3'''', 4'''', 5''''-triazole]lupalbigenin (**155**) in 43% yield.

Compound **155** was obtained as yellow amorphous solid. The IR spectrum indicated the presence of hydroxyl group (3382 cm⁻¹) and aromatic nucleus (1614 and 1510 cm⁻¹). The HR-TOFMS (ESI) spectrum, which showed [M-H] at m/z 544.2110, corresponding to the molecular formula of $C_{30}H_{31}N_3O_7$. The ¹H- and ¹³C-NMR spectral data (CD₃OD, Table 39) of compound **155** were similar to that of compound **8**. The significant differences were the presence of triazole group at δ 8.09 (1H, s, H-3'''), the methylene proton signals at δ 5.32 (2H, s, H-1''') and 5.02 (2H, s, H-4''''). The down-field shift of H-8 signal at δ 6.85 was observed and the down-field shift of C-6 and C-7 signal at δ 114.4 and 163.6, respectively. On the basis of

the above data, the structure of **155** was concluded as **7-***O*-[1'''-(carboxymethyl)-1''',*H*-3''',4''',5'''-triazole]lupalbigenin.

Biological Activities

The biological activity of the natural compounds; derrisisoflavone A (1), 5,7,4'-trihydroxy-6,8-diprenylisoflavone (7), lupalbienin (8), scandinone (9), scanderone (28), osajin (44) and scandenin (51), and the synthetic analogues; derrisisoflyone A 7-O-acetate (124), derrisisoflavone A 4'-O-acetate (125), derrisisoflavone A 7,4'-di-O-acetate (126), lupalbigenin 7-O-acetate (127), lupalbigenin 4'-O-acetate (128), lupalbigenin 7,4'-di-O-acetate (129), osajin 4'-O-acetate (130), derrisisoflavone A 7-O-methyl ether (131), derrisisoflavone A 4'-O-methyl ether (132), derrisisoflavone A 7,4'-di-O-methyl ether (133), lupalbigenin 7-O-methyl ether (134), lupalbigenin 7,4'-di-O-methyl ether (135), 4'-Omethylosajin (43), tetrahydroderrisisoflavone A (136), hexahydroderrisisoflavone A (137), dihydrolupalbigenin (138), tetrahydrolupalbigenin (139), hexahydrolupalbigenin (140), tetrahydroosajin (141), hexahydroosajin (142), tetrahydrolupalbigenin 7-O-methyl ether (143), derrisisoflavone A 7-O-propanoate (144), derrisisoflavone A 4'-O-propanoate (145), derrisisoflavone A 7,4'-di-O-propanoate (146), 5'-nitrolupalbigenin (147), 2", 3"'-epoxylupalbigenin (148), 2", 3", 2"', 3"'-diepoxylupalbigenin (149), lupalbigenin 7-O-benzoate (150), lupalbigenin 7,4'-di-O-benzoate (151), 7-O-propargylluaplbigenin (152), 7,4'-O-dipropargyllupalbigenin (153) and 7-*O*-[1'''-(carboxymethyl)-1'''',*H*-3'''',4'''',5''''-triazole]lupalbigenin (**155**)

conducted in the present study were anti-butyrylcholinesterase (BuChE) activity. The assay results are shown in Tables 40 and 41.

Compounds 7 and 8 exhibited anti-butyrylcholinesterase activity stronger than galantamine, the reference anti-cholinesterase drug, with IC $_{50}$ 1.44 and 2.19 μ M, respectively. Whereas compounds 1, 9 and 44 showed low activity. The analogues 124, 125, 133, 136 and 144 synthesized from compound 1 exhibited higher BuChE inhibitory activity than the parent compound with IC $_{50}$ of 6.07, 16.04, 12.58, 2.53 and 10.31 μ M, respectively, and compound 136 exhibited significant activity of 1.2-fold higher than galantamine. The analogue 138 which was synthesized from compound 8 exhibited the strongest anti-BuChE activity, with the IC $_{50}$ value of 0.64 μ M, which was over 5-fold more active than galantamine. The results suggested that these analogues may be used as anti-BuChE structure lead for anti-Alzheimer disease.

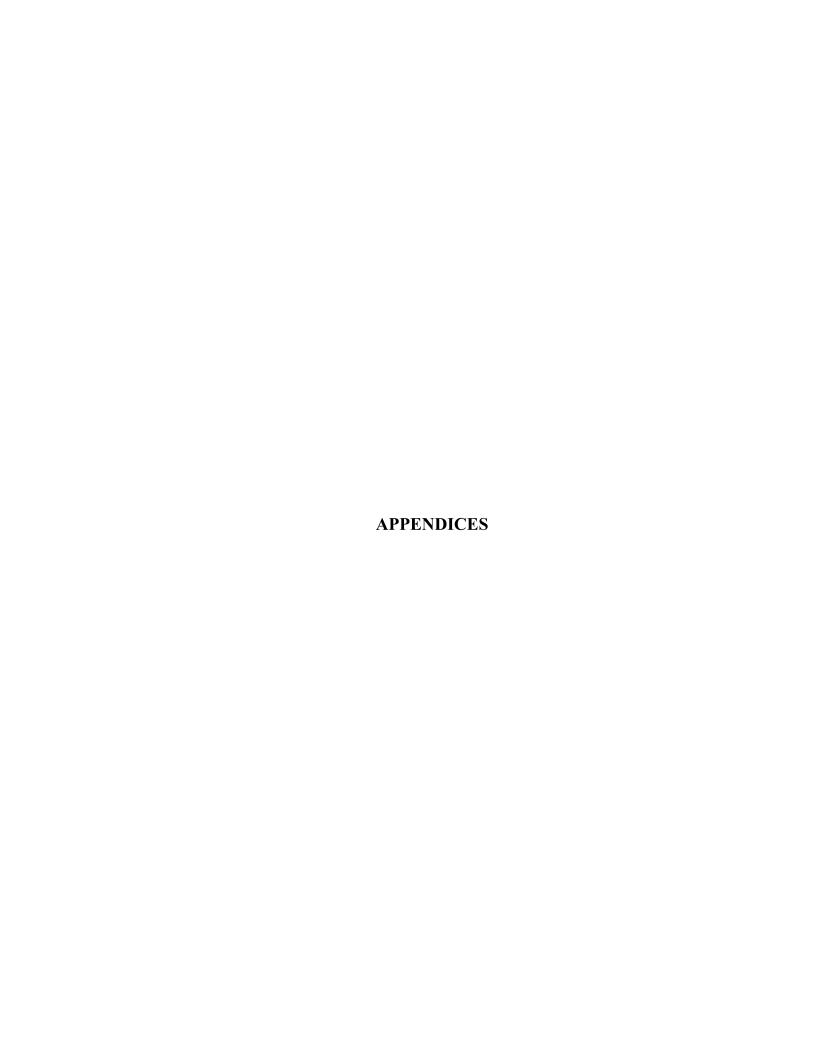
CHAPTER 4

CONCLUSION

Structural Identification of Isolated Isoflavones

Phytochemical investigation of the stems of *Drris scandens* led to the isolation of seven known isoflavones, derrisisoflavone A (1), 5,7,4′-trihydroxy-6,8-diprenylisoflavone (7), lupalbigenin (8), scandinone (9), scanderone (28), osajin (44) and scandenin (51). The known compounds were identified by comparison of spectroscopic and physical data with those of reported values.

Structural Modification


Structursl modification of the isolated natural isoflavones **1**, **8** and **44** gave 32 analogues including derrisisoflvone A 7-*O*-acetate (**124**), derrisisoflavone A 4'-*O*-acetate (**125**), derrisisoflavone A 7,4'-di-*O*-acetate (**126**), lupalbigenin 7-*O*-acetate (**127**), lupalbigenin 4'-*O*-acetate (**128**), lupalbigenin 7,4'-di-*O*-acetate (**129**), osajin 4'-*O*-acetate (**130**), derrisisoflavone A 7-*O*-methyl ether (**131**), derrisisoflavone A 4'-*O*-methyl ether (**132**), derrisisoflavone A 7,4'-di-*O*-methyl ether (**133**), lupalbigenin 7-*O*-methyl ether (**134**), lupalbigenin 7,4'-di-*O*-methyl ether (**135**), 4'-*O*-

methylosajin (43), tetrahydroderrisisoflavone A (136), hexahydroderrisisoflavone A (137), dihydrolupalbigenin (138), tetrahydrolupalbigenin (139), hexahydrolupalbigenin (140), tetrahydroosajin (141), hexahydroosajin (142), tetrahydrolupalbigenin 7-*O*-methyl ether (143), derrisisoflavone A 7-*O*-propanoate (144), derrisisoflavone A 4'-*O*-propanoate (145), derrisisoflavone A 7,4'-di-*O*-propanoate (146), 5'-nitrolupalbigenin (147), 2''',3'''-epoxylupalbigenin (148), 2'',3'',2''',3'''-diepoxylupalbigenin (149), lupalbigenin 7-*O*-benzoate (150), lupalbigenin 7,4'-di-*O*-benzoate (151), 7-*O*-propargyllupalbigenin (152), 7,4'-di-*O*-propargyllupalbigenin (153) and 7-*O*-[1''''-(carboxymethyl)-1'''',*H*-3'''',5''''-triazole]lupalbigenin (155).

Biological Activities

The natural isoflavones, derrisisoflavone A (1), 5,7,4'-Trihydroxy-6,8-diprenylisoflavone (7), lupalbienin (8), scandinone (9), scanderone (28), osajin (44) and scandenin (51) and modified analogues, derrisisoflavone A 7-O-acetate (124), derrisisoflavone A 4'-O-acetate (125), derrisisoflavone A 7,4'-di-O-acetate (126), lupalbigenin 7-O-acetate (127), lupalbigenin 4'-O-acetate (128), lupalbigenin 7,4'-di-O-acetate (129), osajin 4'-O-acetate (130), derrisisoflavone A 7-O-methyl ether (131), derrisisoflavone A 4'-O-methyl ether (132), derrisisoflavone A 7,4'-di-O-methyl ether (133), lupalbigenin 7-O-methyl ether (134), lupalbigenin 7,4'-di-O-methyl ether (135), 4'-O-methyl ether (136), derrisisoflavone A 7,4'-di-O-methyl ether (137), derrisisoflavone A 7-O-methyl ether (137), lupalbigenin 7-O-methyl ether (137), lupalbigenin 7-O-methyl ether (137), derrisisoflavone A 7-O-methyl ether (137), lupalbigenin 7-O-methyl ether (137), lupalbigenin 7-O-methyl ether (137), lupalbigenin 7-O-methyl ether (137), derrisisoflavone A 7-O-methyl ether (138), lupalbigenin 7-O-methyl ether (139), derrisisoflavone A 7-O-methyl ether (139), derrisisoflavone A 7-O-methyl ether (139), lupalbigenin 7-O-methyl ether (139), derrisisoflavone A 7-O-methyl ether (139), derrisisoflavo

methylosajin (43), tetrahydroderrisisoflavone A (136), hexahydroderrisisoflavone A (137), dihydrolupalbigenin (138), tetrahydrolupalbigenin (139), hexahydrolupalbigenin (140), tetrahydroosajin (141), hexahydroosajin (142), tetrahydrolupalbigenin 7-*O*-methyl ether (143), derrisisoflavone A 7-*O*-propanoate (144), derrisisoflavone A 4'-*O*-propanoate (145), derrisisoflavone A 7,4'-di-*O*-propanoate (146), 5'-nitrolupalbigenin (147), 2''',3'''-epoxylupalbigenin (148), 2'',3'',2''',3'''-diepoxylupalbigenin (149), lupalbigenin 7-*O*-benzoate (150), lupalbigenin 7,4'-di-*O*-benzoate (151), 7-*O*-propargyllupalbigenin (152), 7,4'-di-*O*-propargyllupalbigenin (153) and 7-*O*-[1''''-(carboxymethyl)-1'''',*H*-3'''',4'''',5''''-triazole]lupalbigenin (155) were tested for anti-butyrylcholinesterase (BuChE) activity. Compound 138 exhibited strongest anti-butyrylcholinesterase followed by compounds 138, 7, 8, 136, 140, 124, 139, 150, 147 and 144 which showed the IC₅₀ values of 0.64, 1.44, 2.19, 2.53, 4.73, 6.07, 6.64, 7.48, 7.83 and 10.31 μM, respectively.

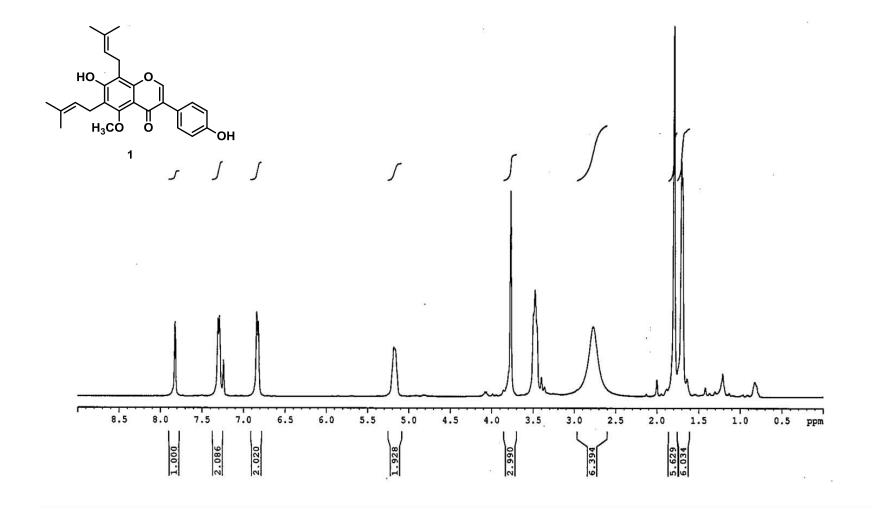


Figure 1 ¹H-NMR Spectrum of Derrisisoflavone A (1) in CDCl₃

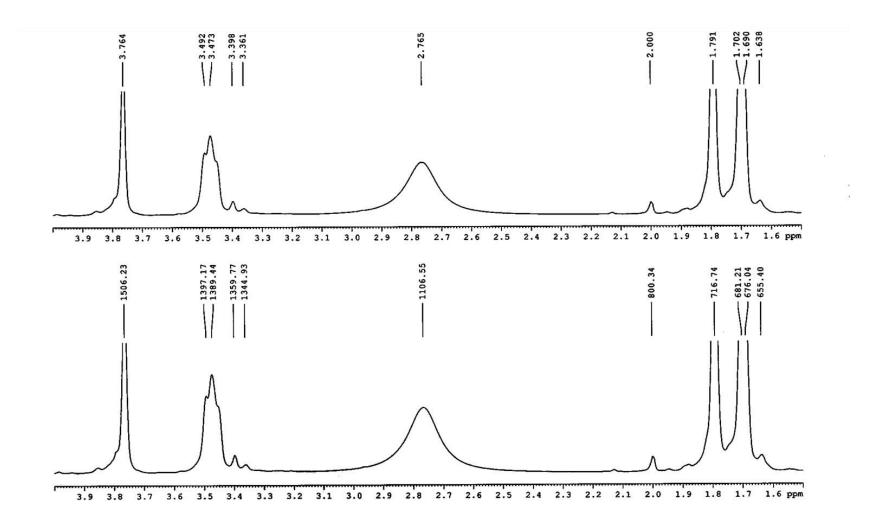


Figure 1a Expansion of ¹H-NMR Spectrum of Derrisisoflavone A (1) in CDCl₃

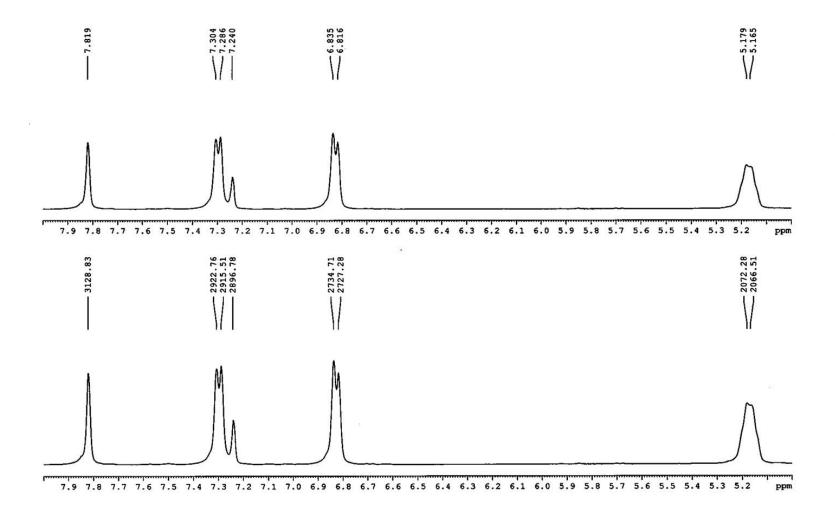


Figure 1b Expansion of ¹H-NMR Spectrum of Derrisisoflavone A (1) in CDCl₃

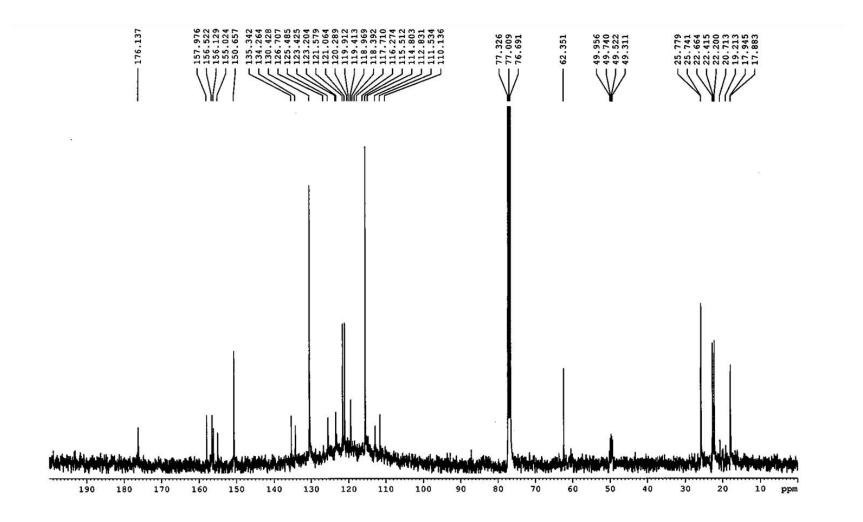


Figure 1c ¹³C-NMR Spectrum of Derrisisoflavone A (1) in CDCl₃

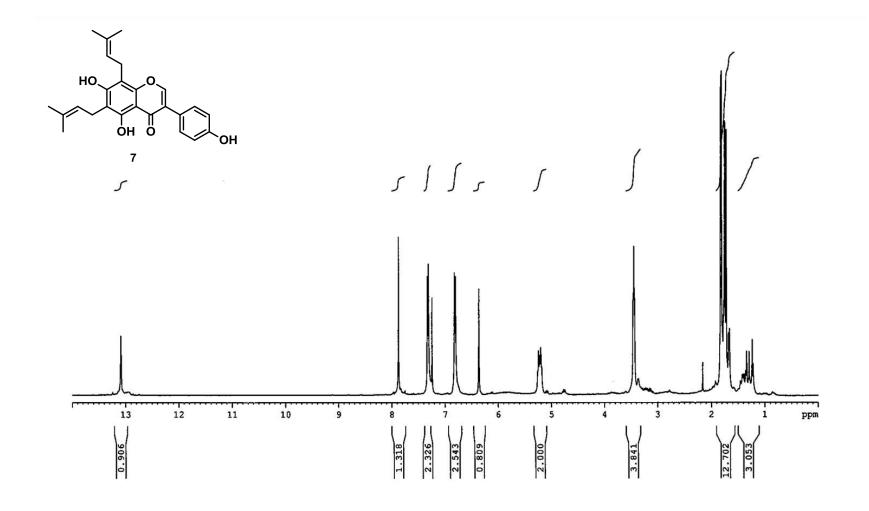


Figure 2 ¹H-NMR Spectrum of 5,7,4'-Trihydroxy-6,8-diphenylisoflavone (7) in CDCl₃

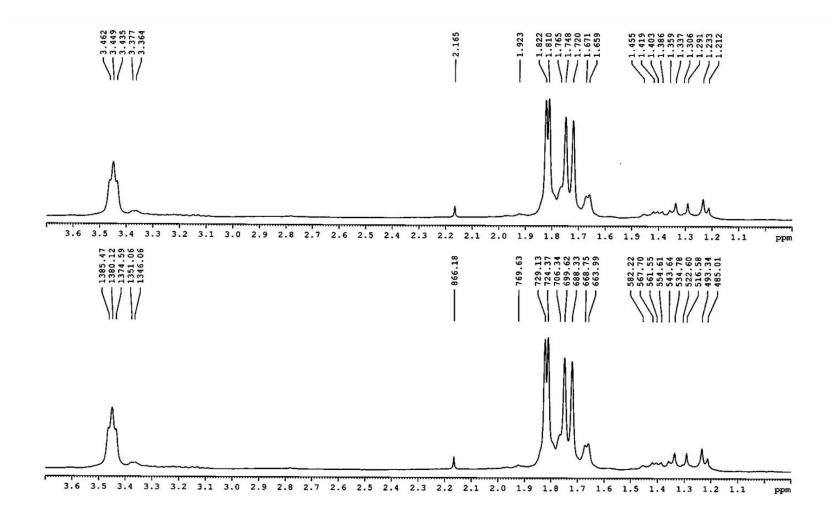


Figure 2a Expansion of ¹H-NMR Spectrum of 5,7,4'-Trihydroxy-6,8-diphenylisoflavone (7) in CDCl₃

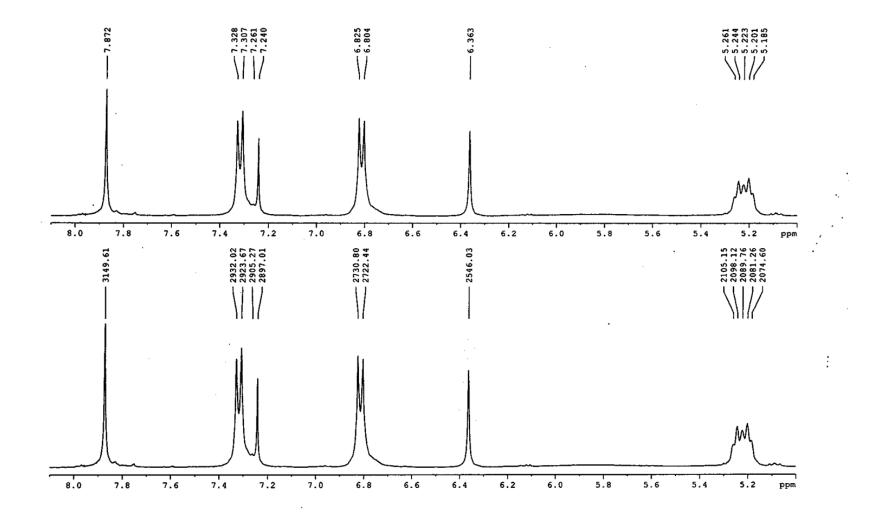


Figure 2b Expansion of ¹H-NMR Spectrum of 5,7,4′-Trihydroxy-6,8-diphenylisoflavone (7) in CDCl₃

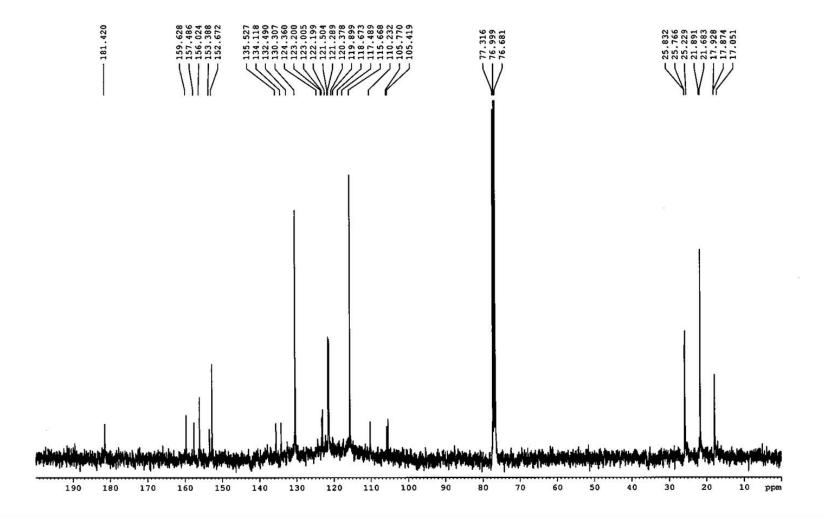


Figure 2c ¹³C-NMR Spectrum of 5,7,4'-Trihydroxy-6,8-diphenylisoflavone (7) in CDCl₃



Figure 3 ¹H-NMR Spectrum of Lupalbigenin (8) in CDCl₃

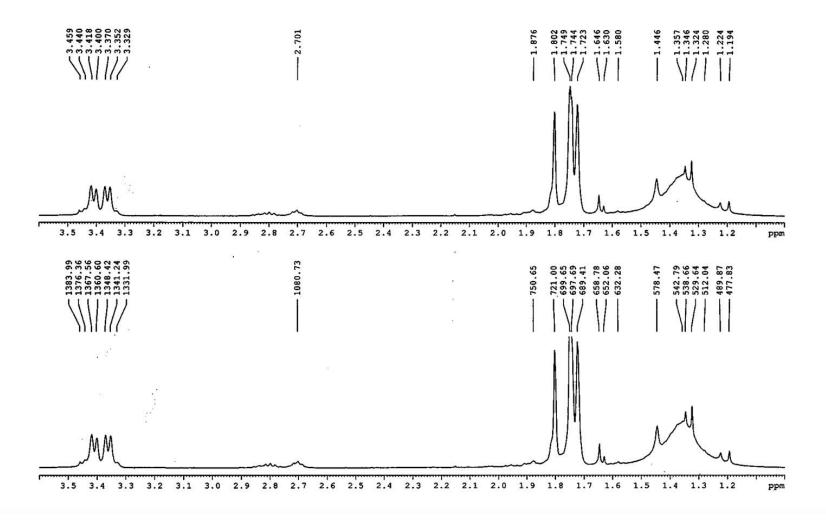


Figure 3a Expansion of ¹H-NMR Spectrum of Lupalbigenin (8) in CDCl₃

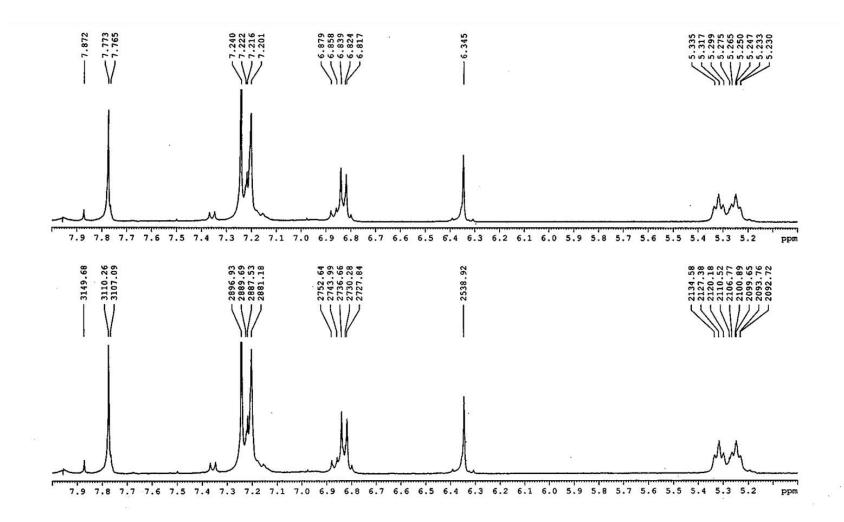


Figure 3b Expansion of ¹H-NMR Spectrum of Lupalbigenin (8) in CDCl₃

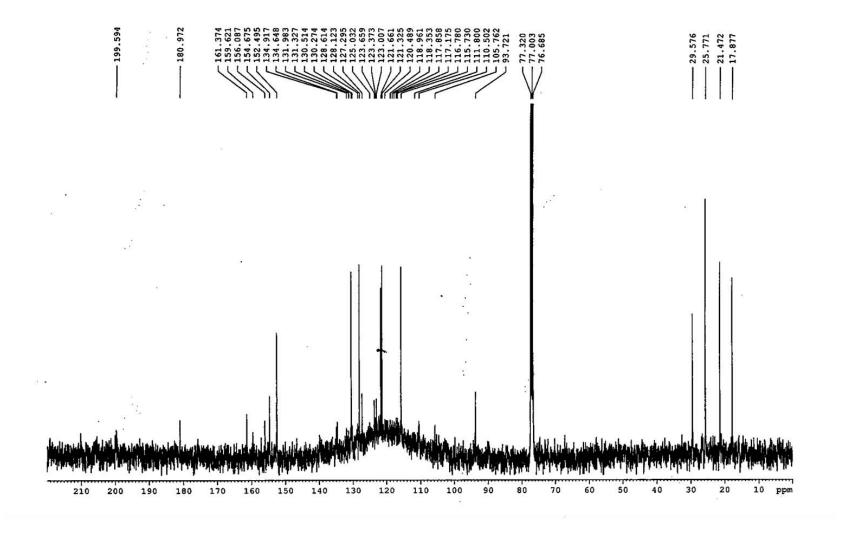


Figure 3c ¹³C-NMR Spectrum of Lupalbigenin (8) in CDCl₃

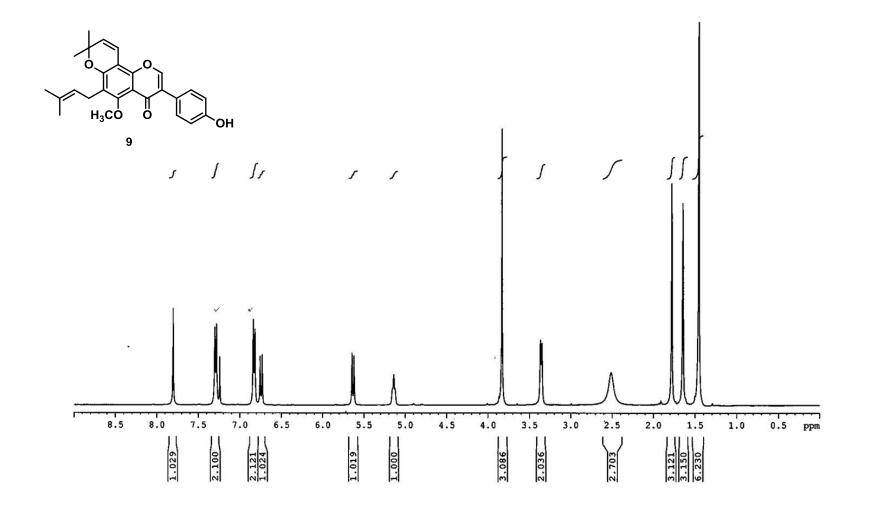


Figure 4 ¹H-NMR Spectrum of Scandinone (9) in CDCl₃ + 2 Drops of CD₃OD

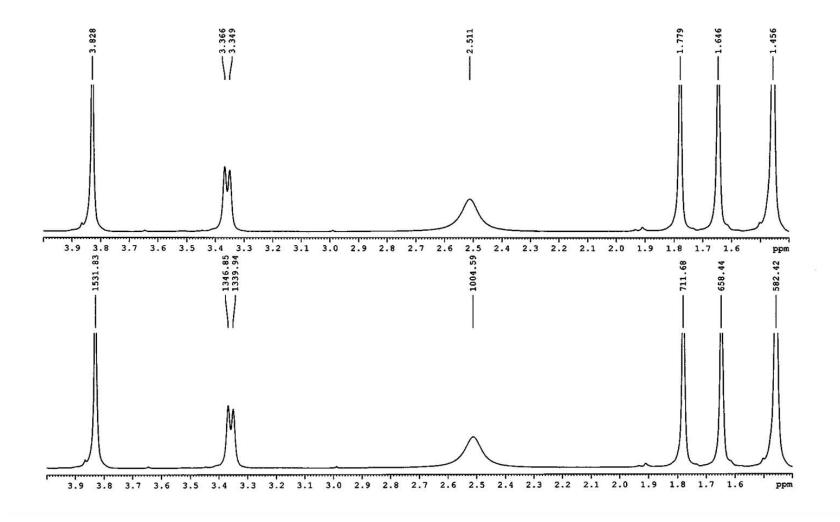


Figure 4a Expansion of ¹H-NMR Spectrum of Scandinone (9) in CDCl₃ + 2 Drops of CD₃OD

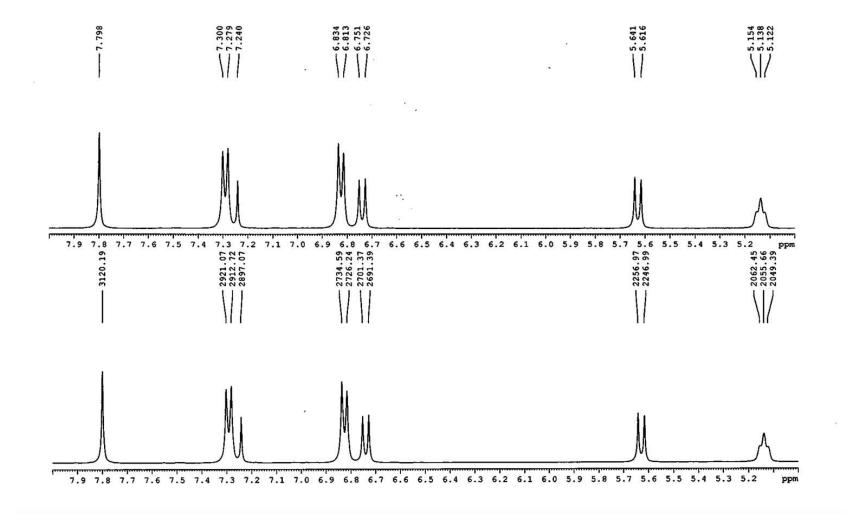


Figure 4b Expansion of ¹H-NMR Spectrum of Scandinone (9) in CDCl₃ + 2 Drops of CD₃OD

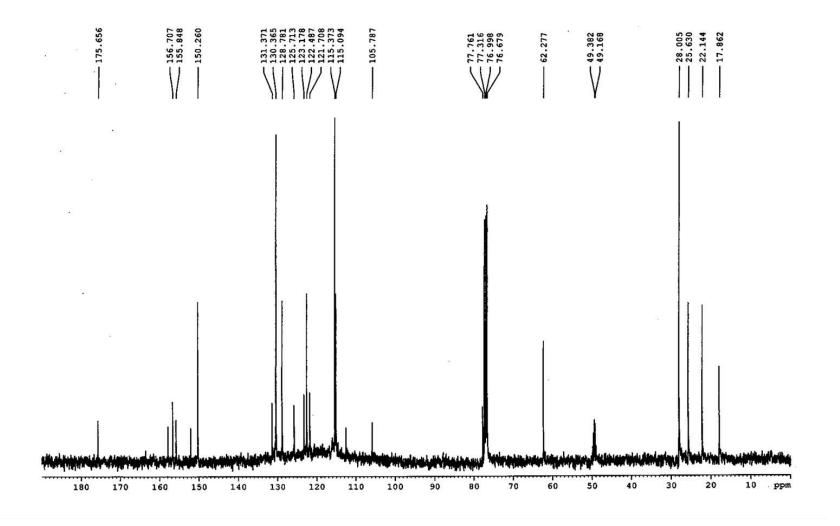


Figure 4c ¹³C-NMR Spectrum of Scandinone (9) in CDCl₃ + 2 Drops of CD₃OD

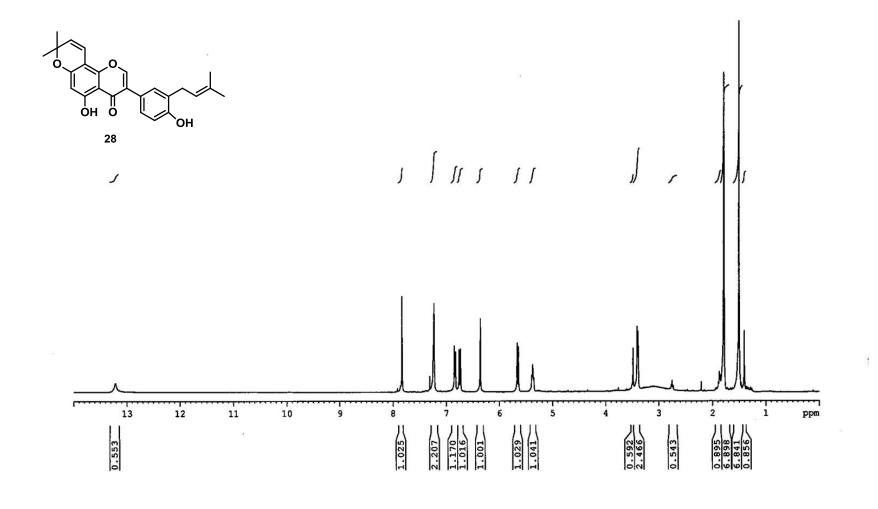


Figure 5 ¹H-NMR Spectrum of Scanderone (28) in CDCl₃ + 2 Drops of CD₃OD

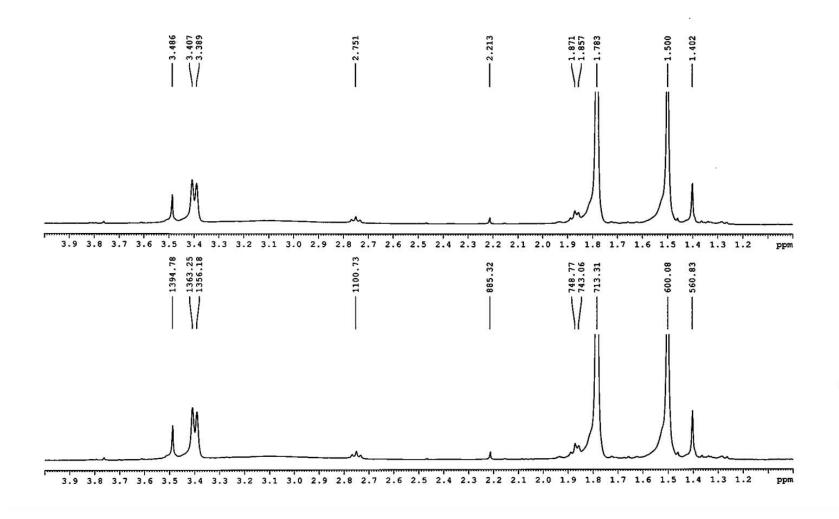


Figure 5a Expansion of ¹H-NMR Spectrum of Scanderone (28) in CDCl₃ + 2 Drops of CD₃OD

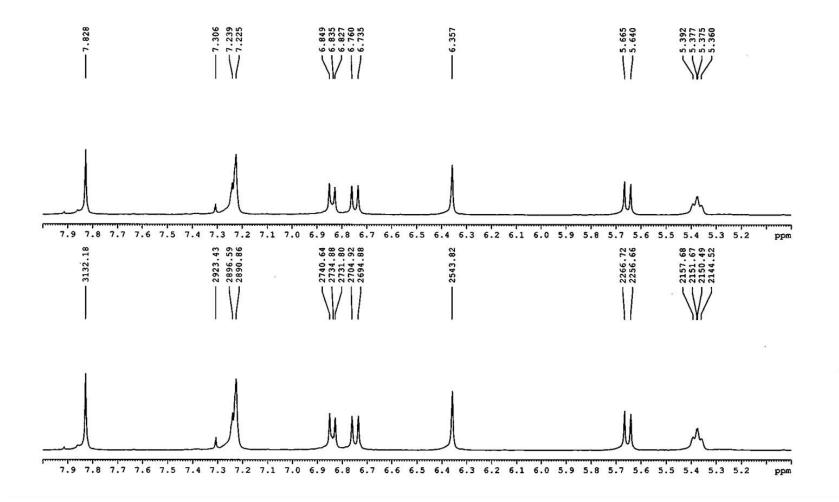


Figure 5b Expansion of ¹H-NMR Spectrum of Scanderone (28) in CDCl₃ + 2 Drops of CD₃OD

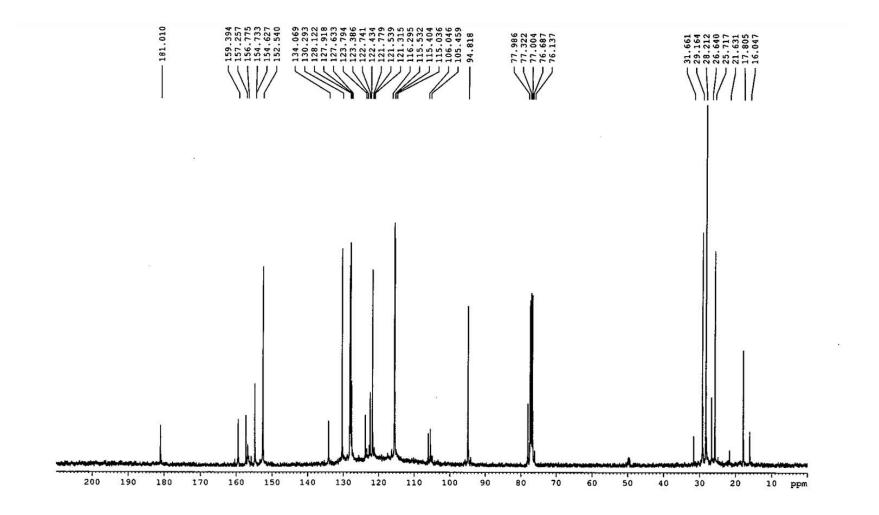


Figure 5c ¹³C-NMR Spectrum of Scanderone (28) in CDCl₃ + 2 Drops of CD₃OD

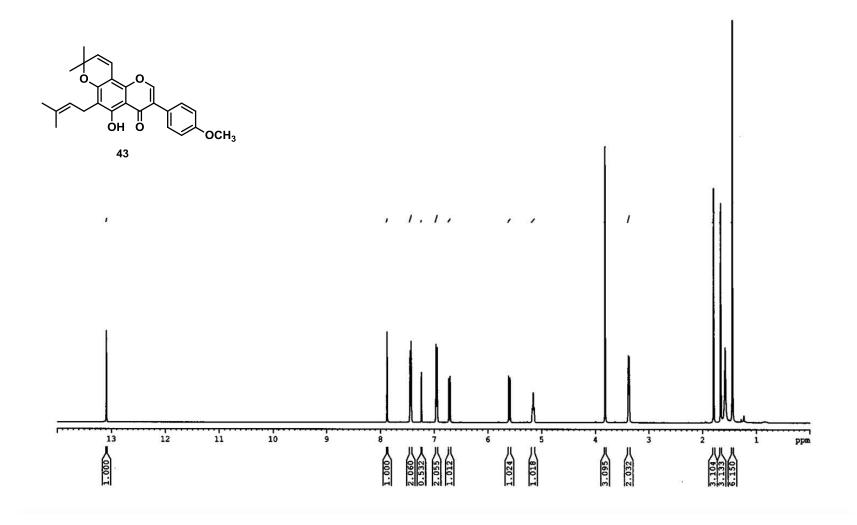


Figure 6 ¹H-NMR Spectrum of 4'-O-Methylosajin (43) in CDCl₃

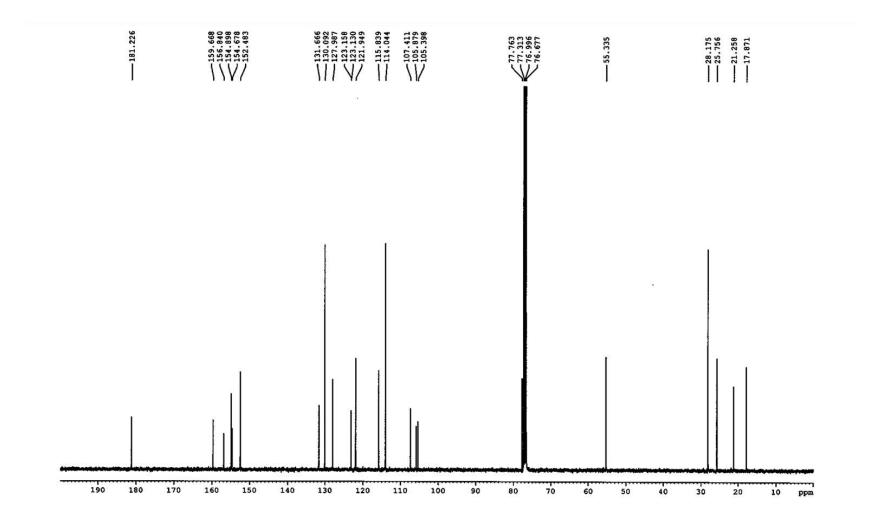


Figure 6a ¹³C-NMR Spectrum of 4'-O-Methylosajin (43) in CDCl₃

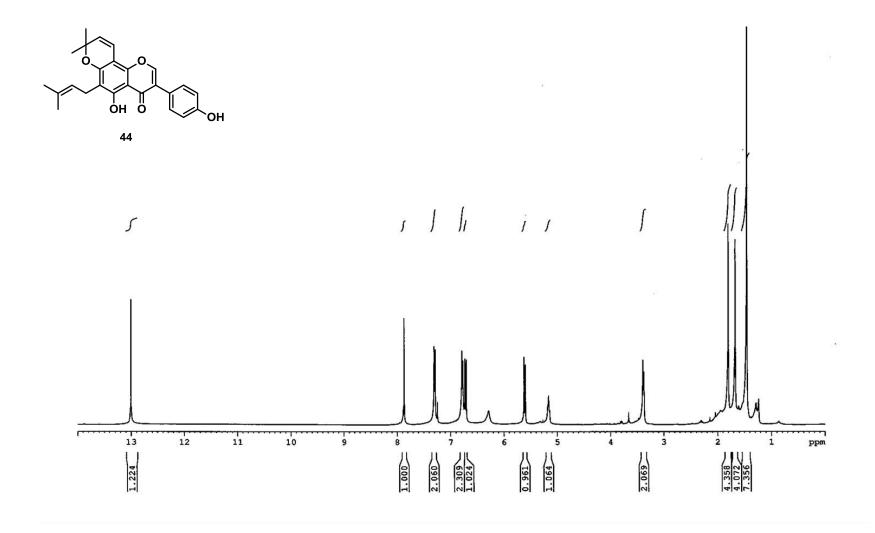


Figure 7 ¹H-NMR Spectrum of Osajin (44) in CDCl₃

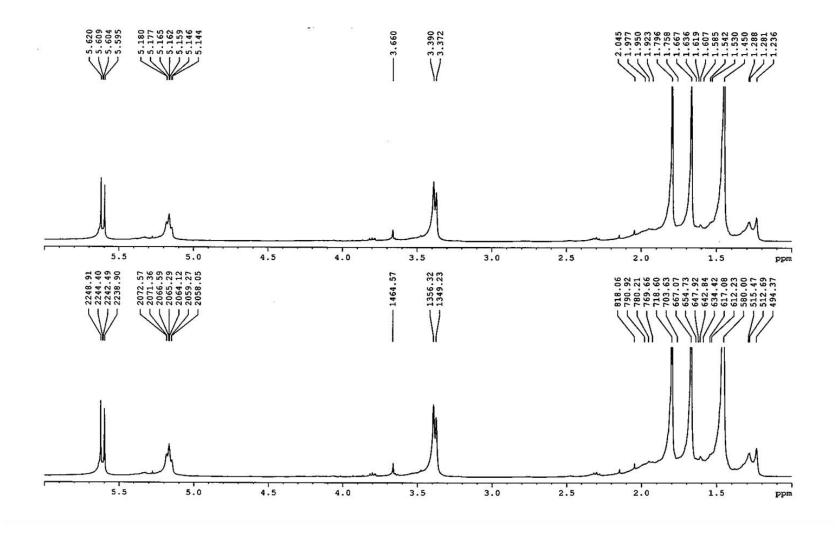


Figure 7a Expansion of ¹H-NMR Spectrum of Osajin (44) in CDCl₃

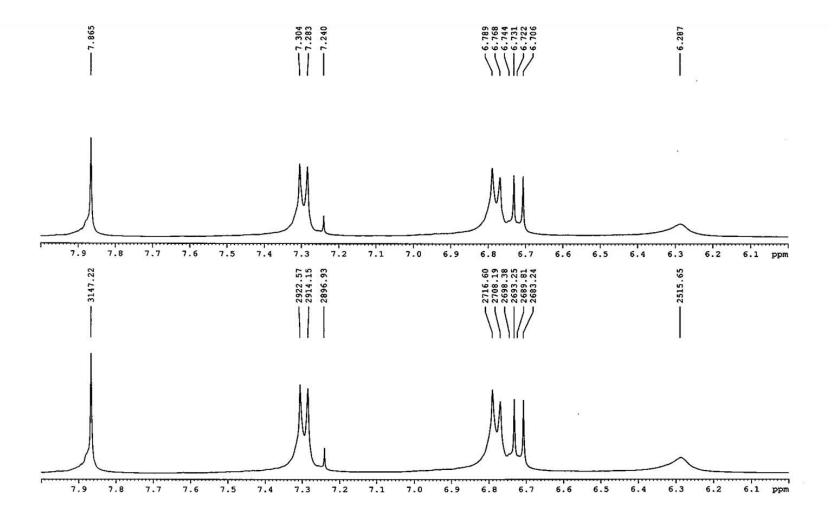


Figure 7b Expansion of ¹H-NMR Spectrum of Osajin (44) in CDCl₃

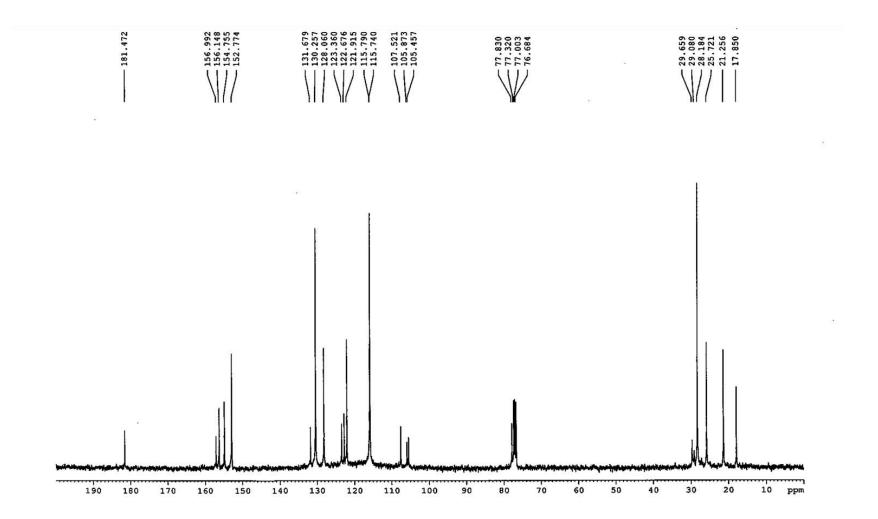


Figure 7c ¹³C-NMR Spectrum of Osajin (44) in CDCl₃

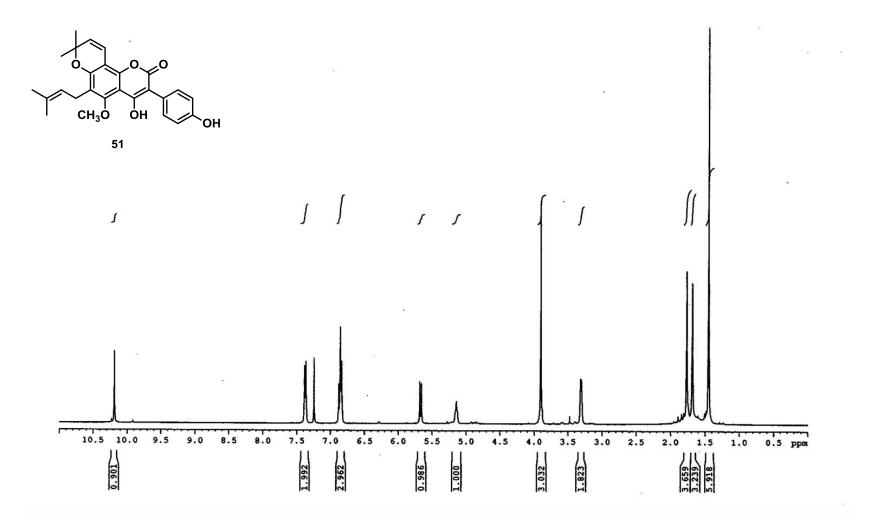


Figure 8 ¹H-NMR Spectrum of Scandenin (**51**) in CDCl₃

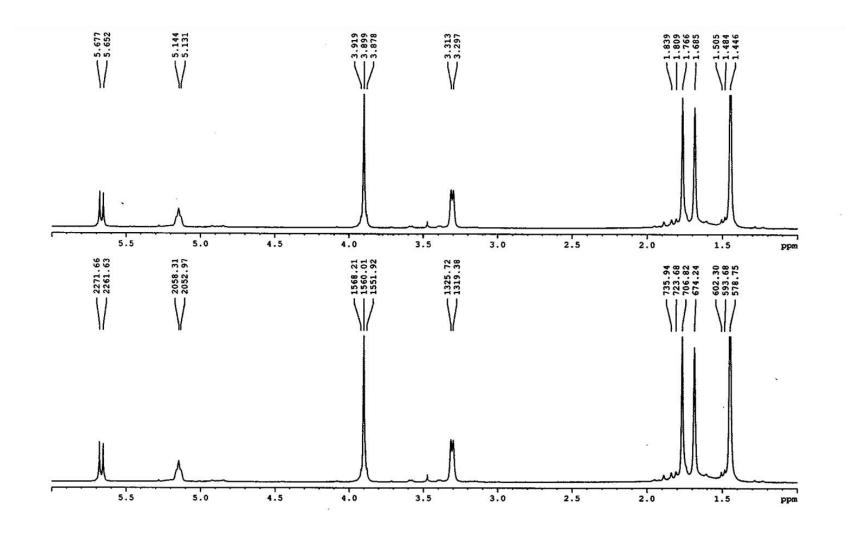


Figure 8a Expansion of ¹H-NMR Spectrum of Scandenin (**51**) in CDCl₃

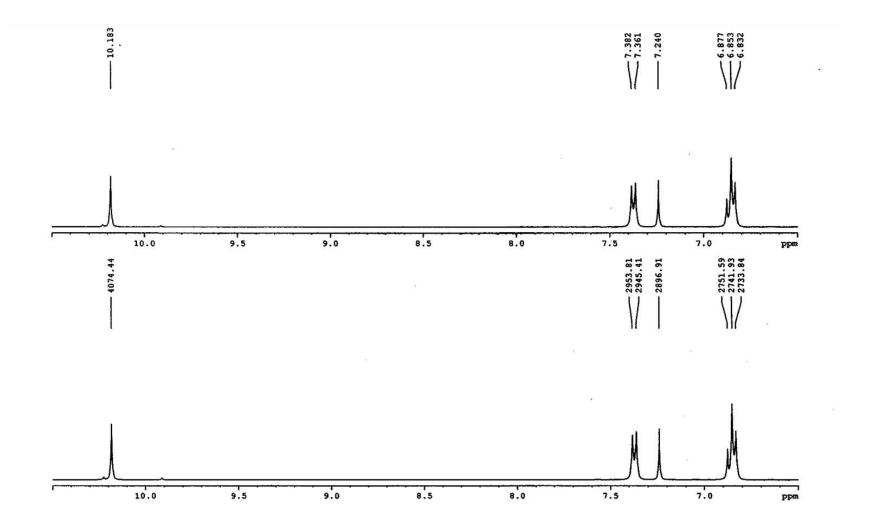


Figure 8b Expansion of ¹H-NMR Spectrum of Scandenin (**51**) in CDCl₃

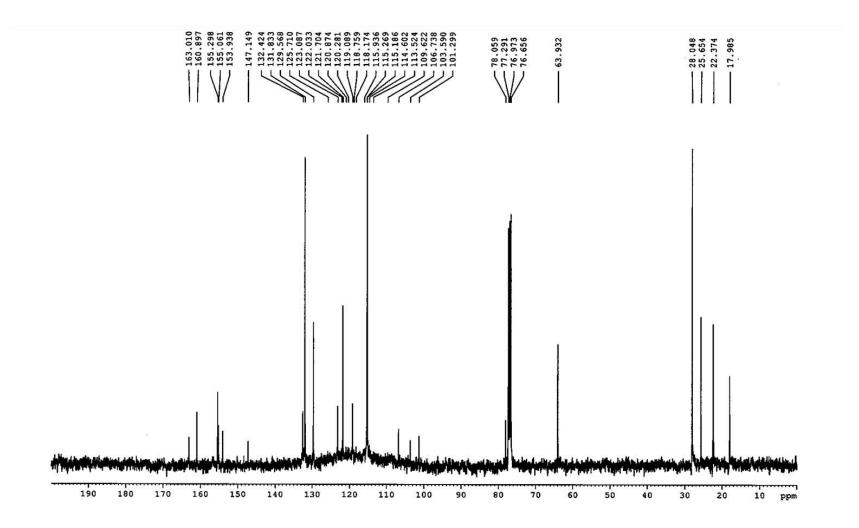


Figure 8c ¹³C-NMR Spectrum of Scandenin (**51**) in CDCl₃

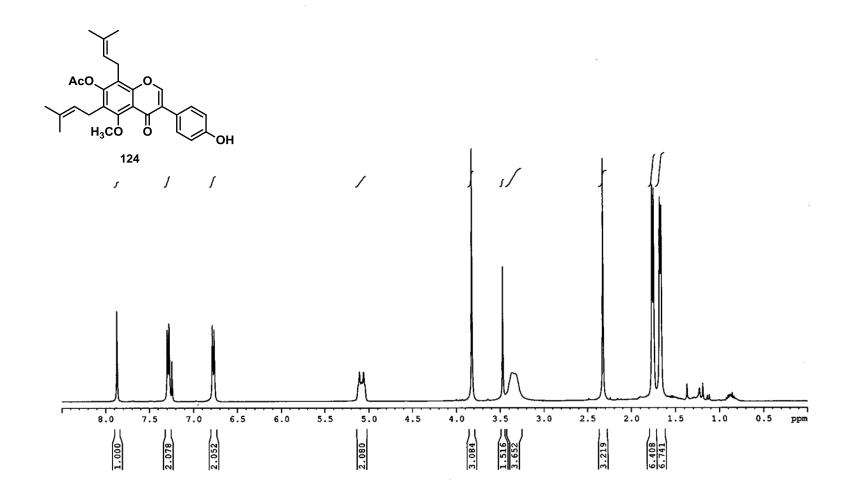


Figure 9 ¹H-NMR Spectrum of Derrisisoflavone A 7-O-acetate (124) in CDCl₃

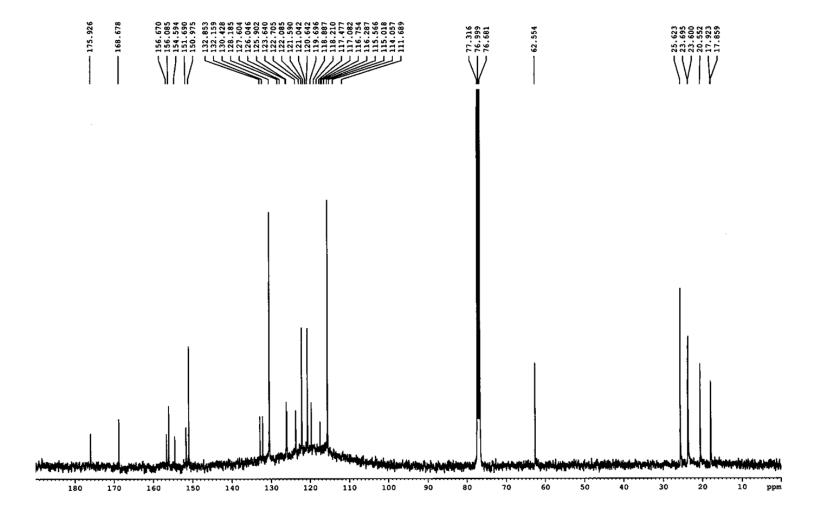


Figure 9a ¹³C-NMR Spectrum of Derrisisoflavone A 7-*O*-acetate (**124**) in CDCl₃

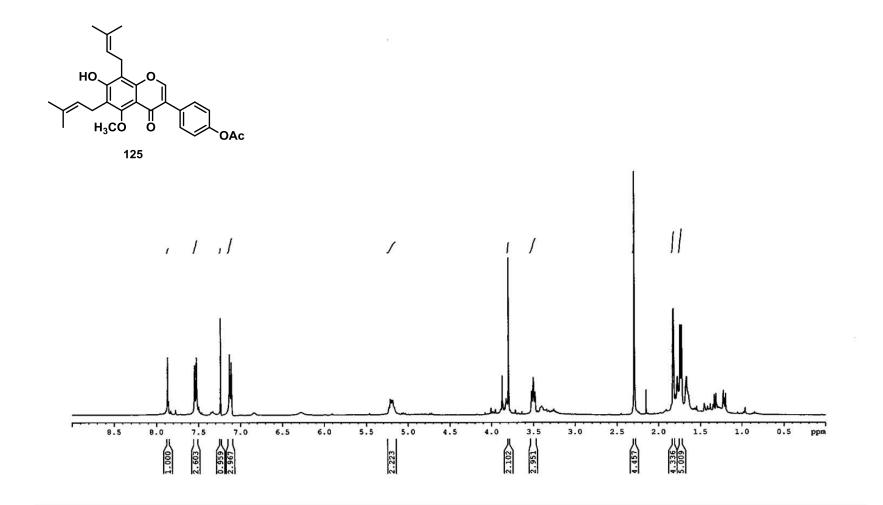


Figure 10 ¹H-NMR Spectrum of Derrisisoflavone A 4'-O-acetate (125) in CDCl₃

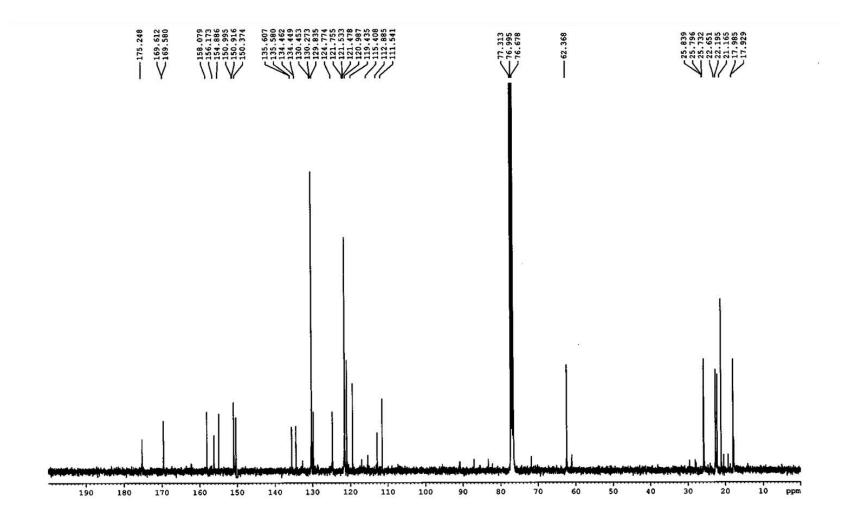


Figure 10a ¹³C-NMR Spectrum of Derrisisoflavone A 4'-O-acetate (125) in CDCl₃

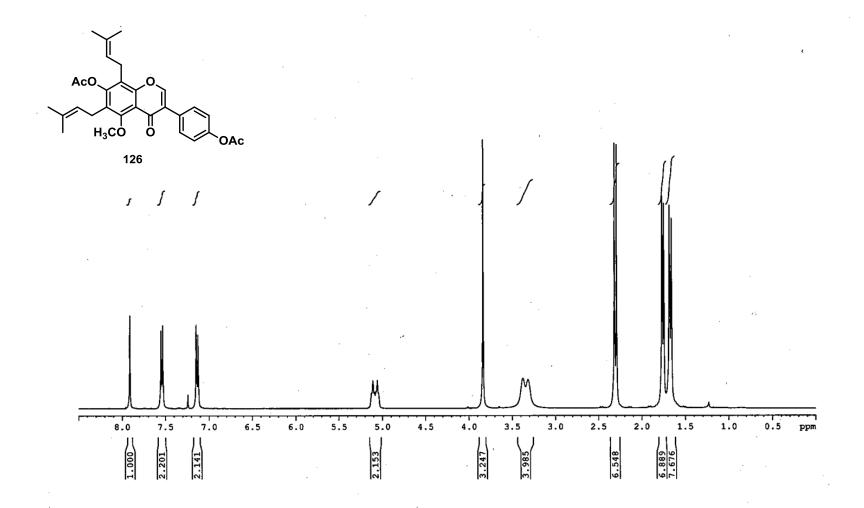


Figure 11 ¹H-NMR Spectrum of Derrisisoflavone A 7,4'-di-*O*-diacetate (**126**) in CDCl₃

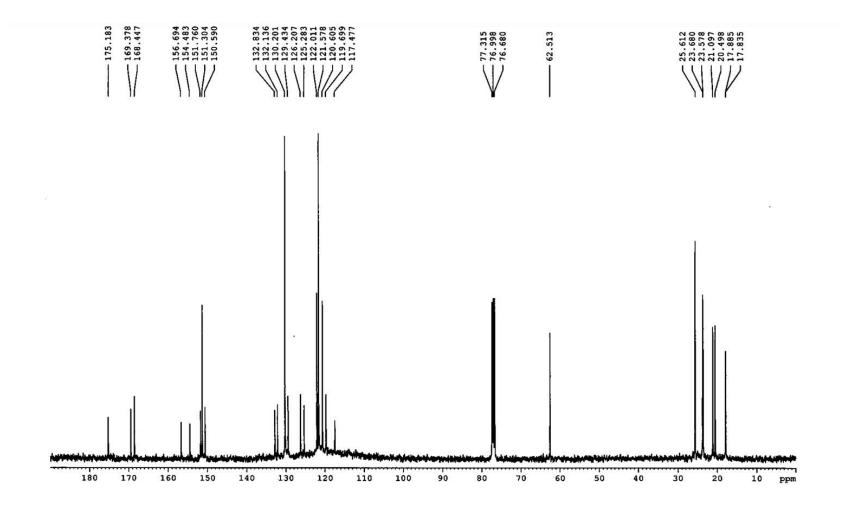


Figure 11a ¹³C-NMR Spectrum of Derrisisoflavone A 7,4'-di-*O*-acetate (**126**) in CDCl₃

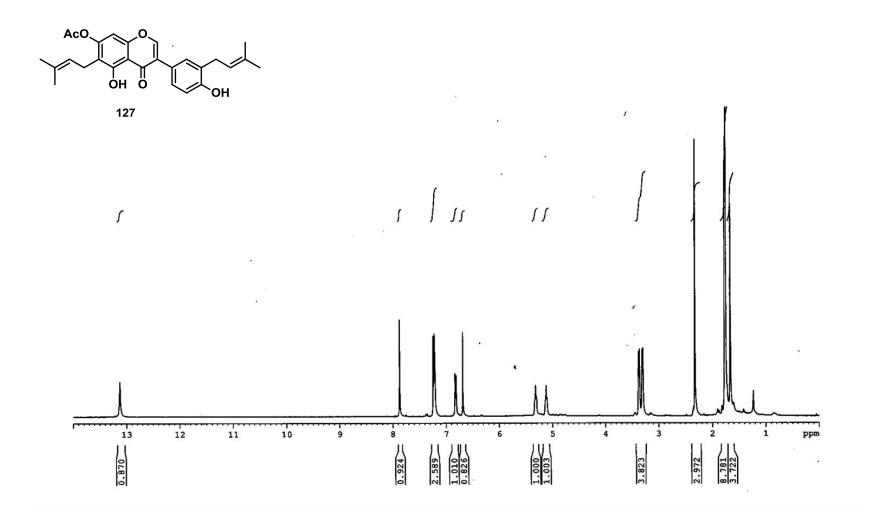


Figure 12 ¹H-NMR Spectrum of Lupalbigenin 7-*O*-acetate (**127**) in CDCl₃

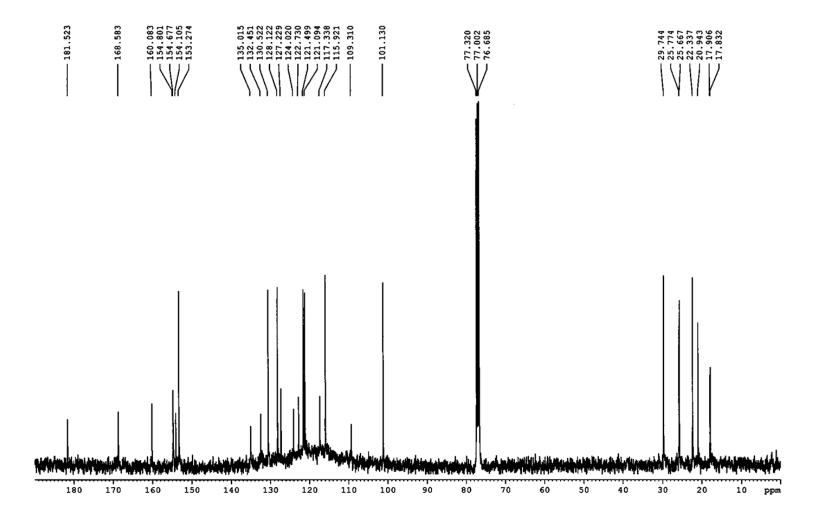


Figure 12a ¹³C-NMR Spectrum of Lupalbigenin 7-*O*-acetate (**127**) in CDCl₃

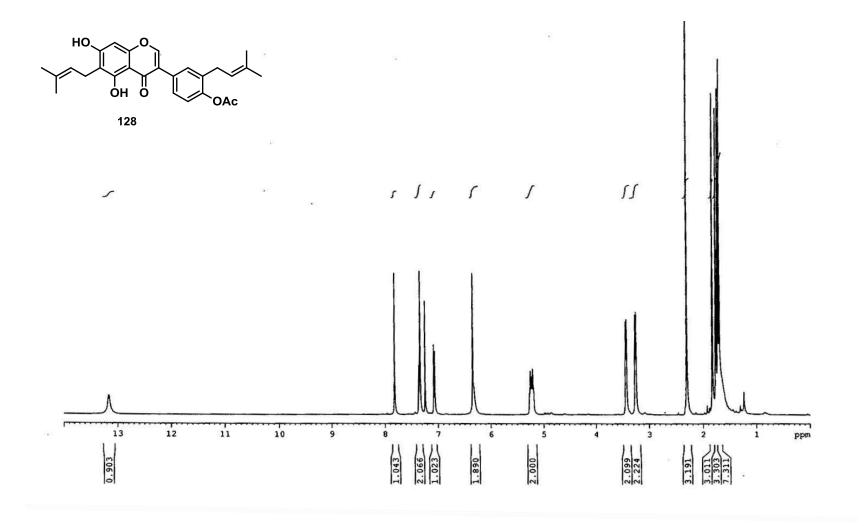


Figure 13 ¹H-NMR Spectrum of Lupalbigenin 4'-O-acetate (128) in CDCl₃

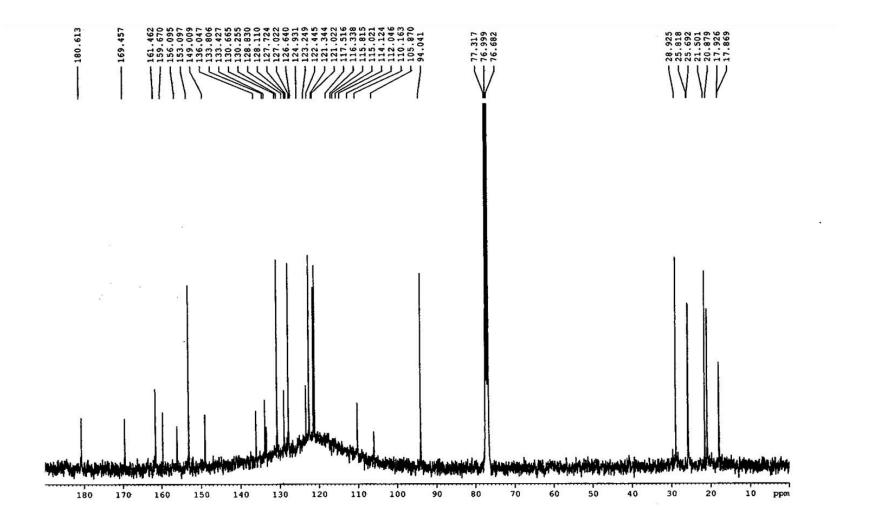


Figure 13a ¹³C-NMR Spectrum of Lupalbigenin 4'-O-acetate (128) in CDCl₃

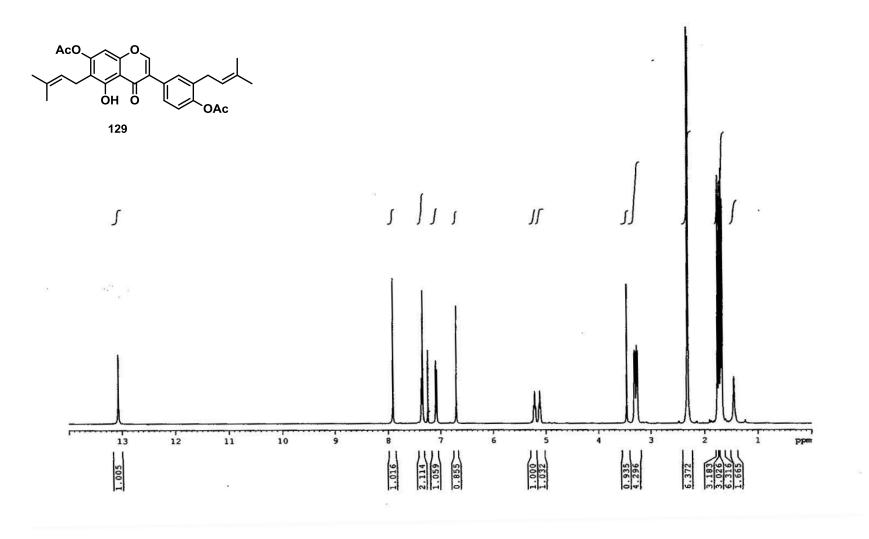


Figure 14 ¹H-NMR Spectrum of Lupalbigenin 7,4'-di-*O*-acetate (**129**) in CDCl₃

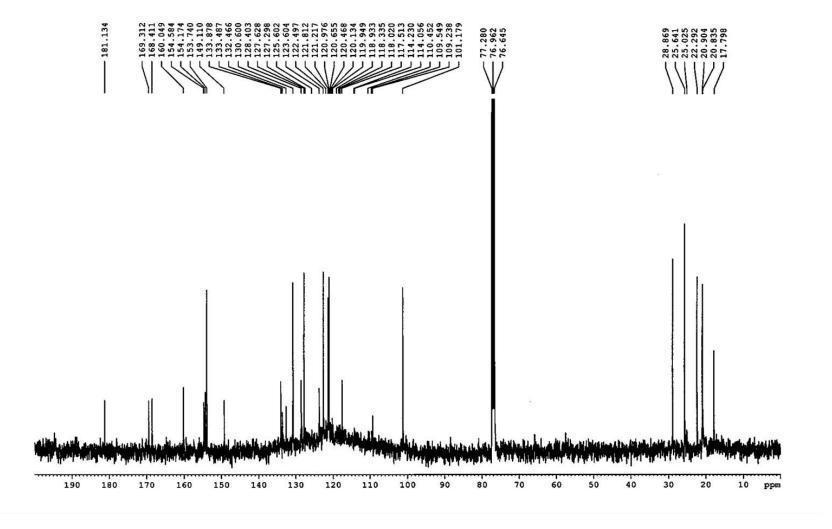


Figure 14a ¹³C-NMR Spectrum of Lupalbigenin 7,4'-di-*O*-acetate (**129**) in CDCl₃

Figure 15 ¹H-NMR Spectrum of Osajin 4'-O-acetate (**130**) in CDCl₃

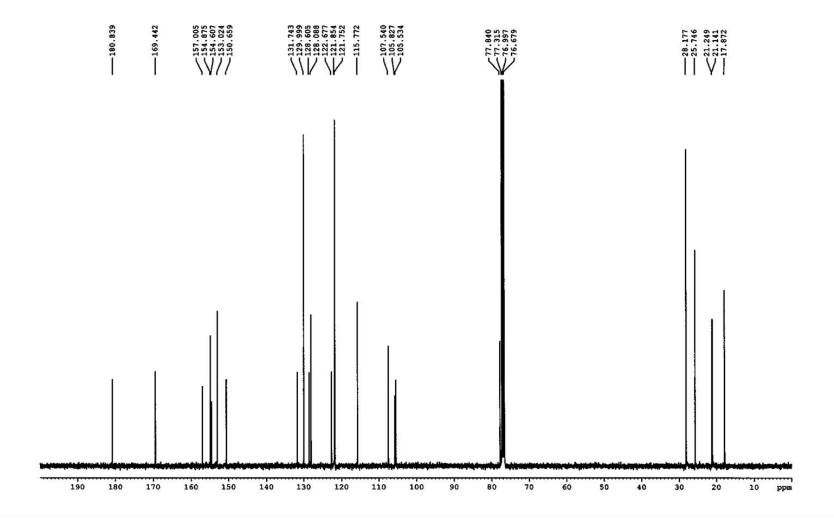


Figure 15a ¹³C-NMR Spectrum of Osajin 4'-O-acetate (130) in CDCl₃

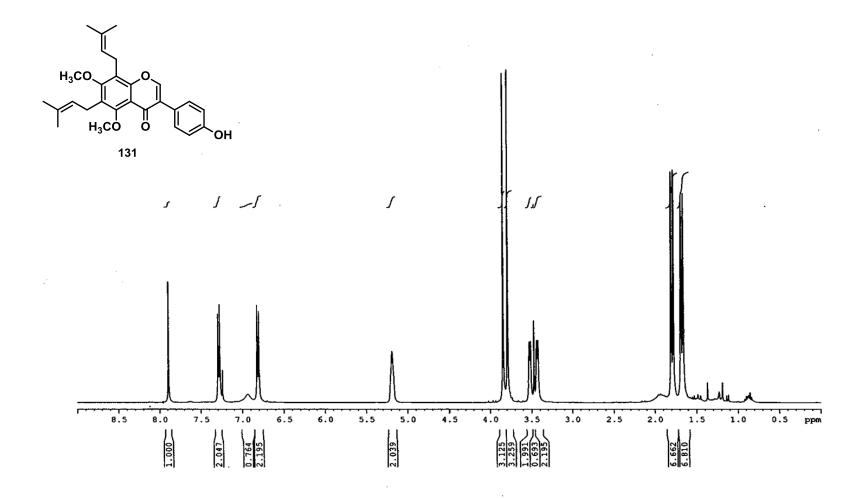


Figure 16 ¹H-NMR Spectrum of Derrisisoflavone A 7-O-methyl ether (131) in CDCl₃

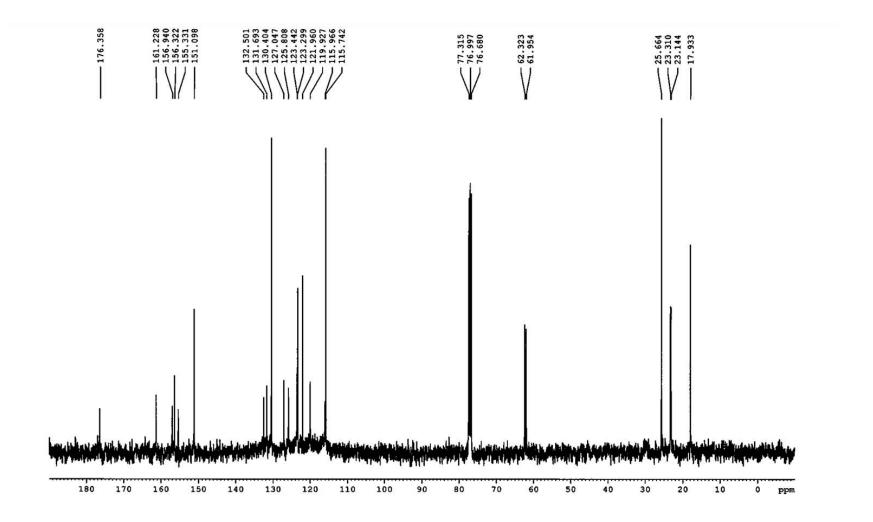


Figure 16a ¹³C-NMR Spectrum of Derrisisoflavone A 7-*O*-methyl ether (**131**) in CDCl₃

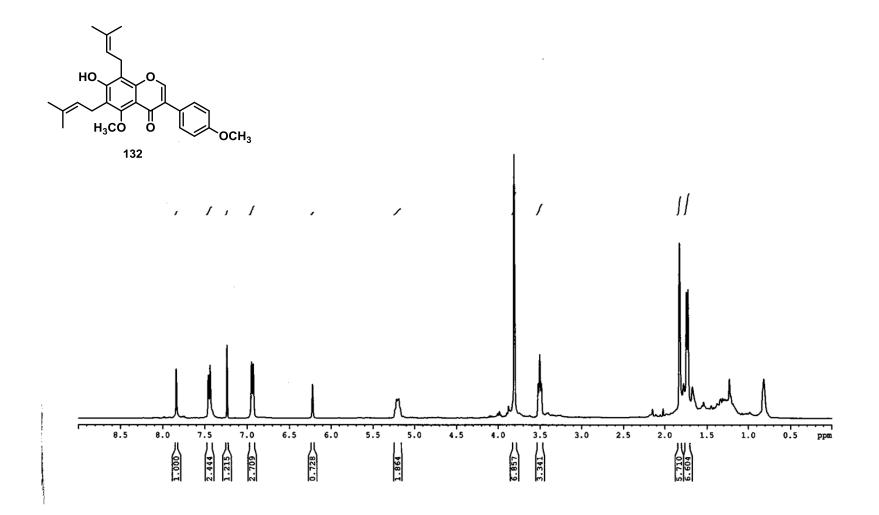


Figure 17 ¹H-NMR Spectrum of Derrisisoflavone A 4'-O-methyl ether (132) in CDCl₃

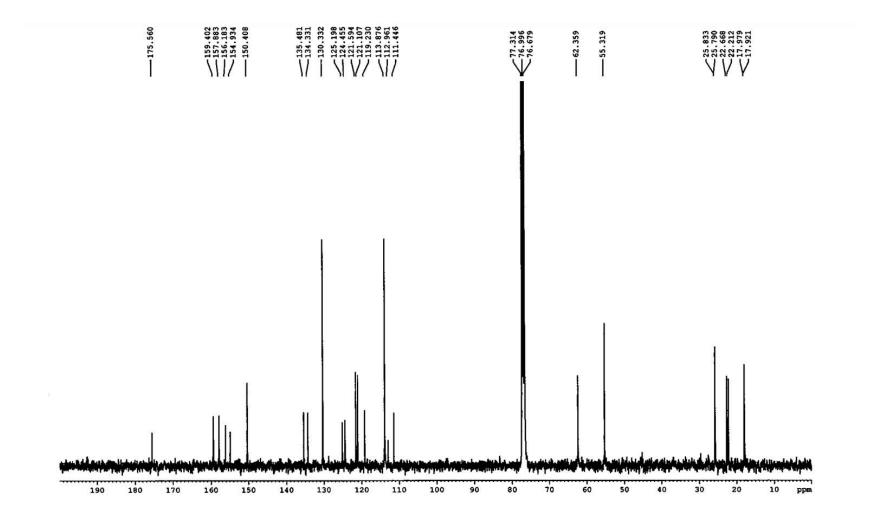


Figure 17a ¹³C-NMR Spectrum of Derrisisoflavone A 4'-O-methyl ether (132) in CDCl₃

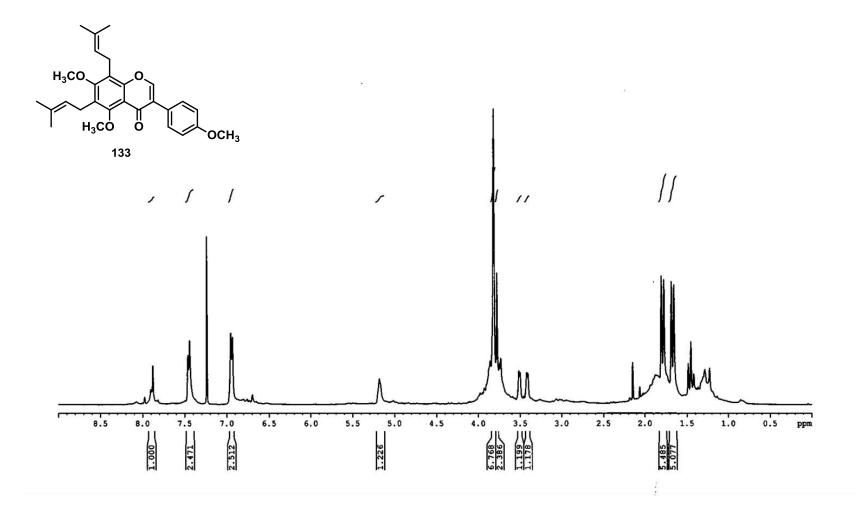


Figure 18 ¹H-NMR Spectrum of Derrisisoflavone A 7,4'-di-*O*-methyl ether (**133**) in CDCl₃

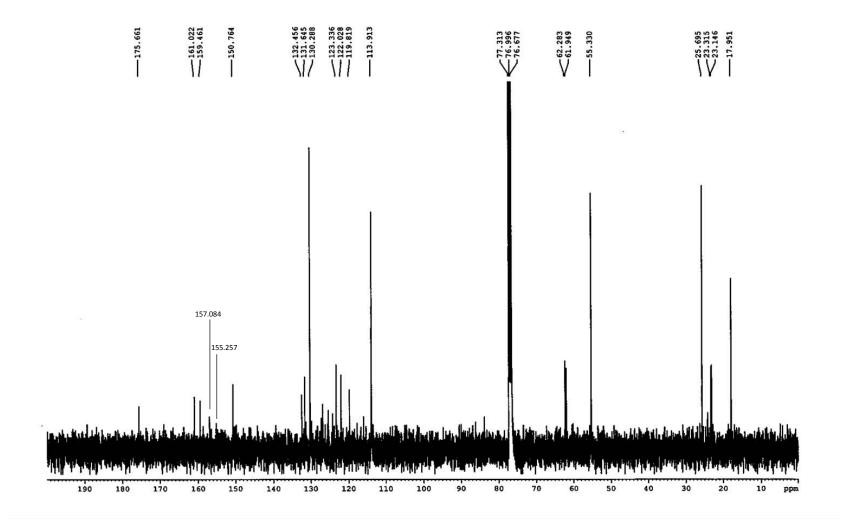


Figure 18a ¹³C-NMR Spectrum of Derrisisoflavone A 7,4'-di-*O*-methyl ether (**133**) in CDCl₃

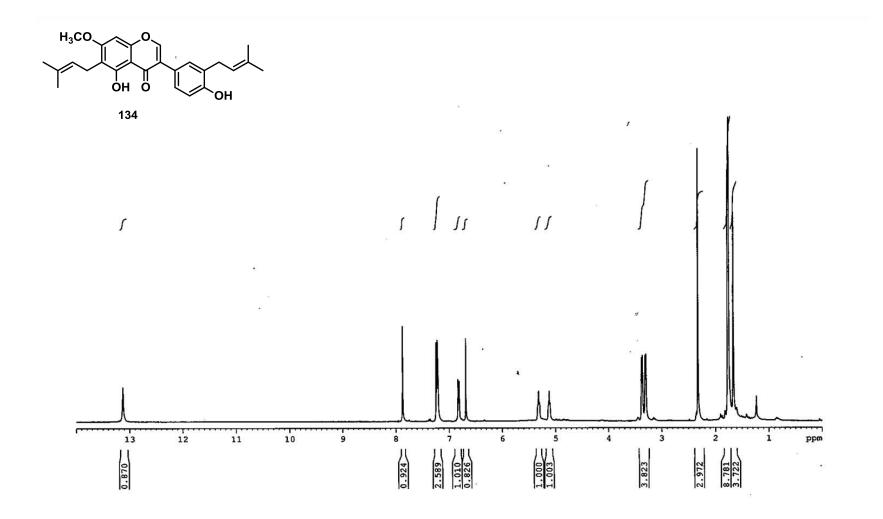


Figure 19 ¹H-NMR Spectrum of Lupalbigenin 7-*O*-methyl ether (**134**) in CDCl₃

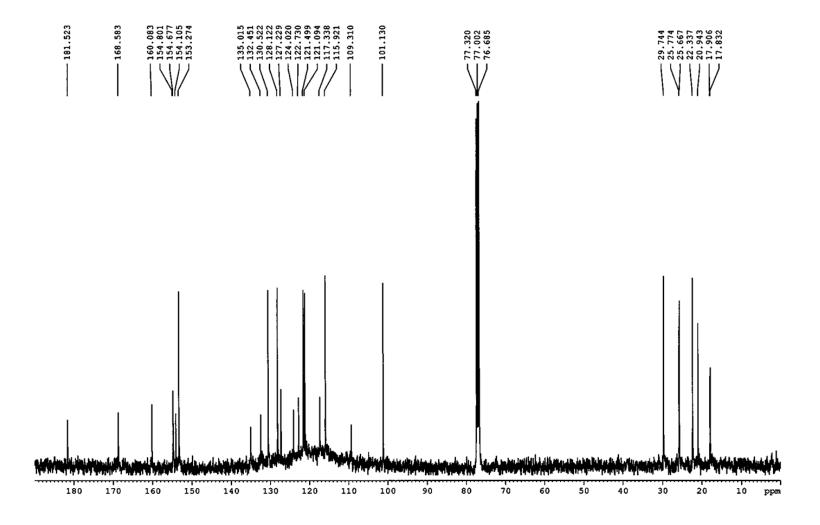


Figure 19a ¹³C-NMR Spectrum of Lupalbigenin 7-O-methyl ether (**134**) in CDCl₃

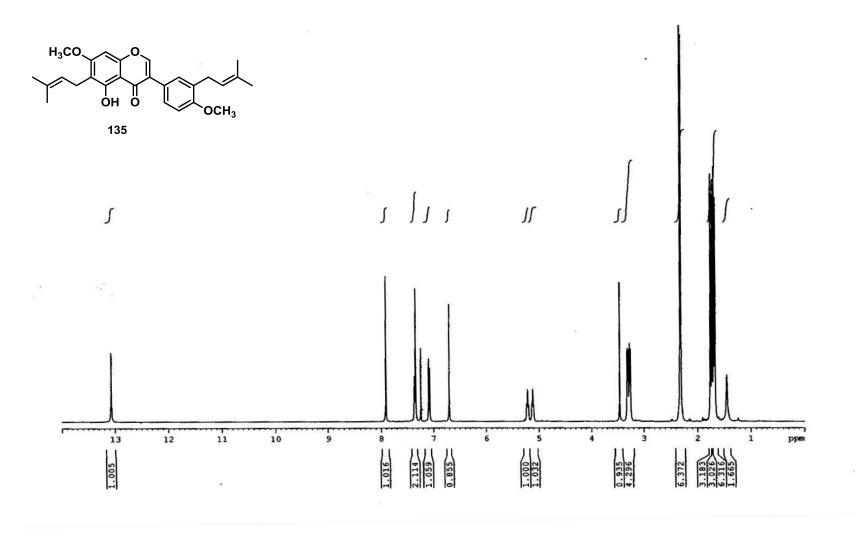


Figure 20 ¹H-NMR Spectrum of Lupalbigenin 7,4'-di-*O*-methyl ether (**135**) in CDCl₃

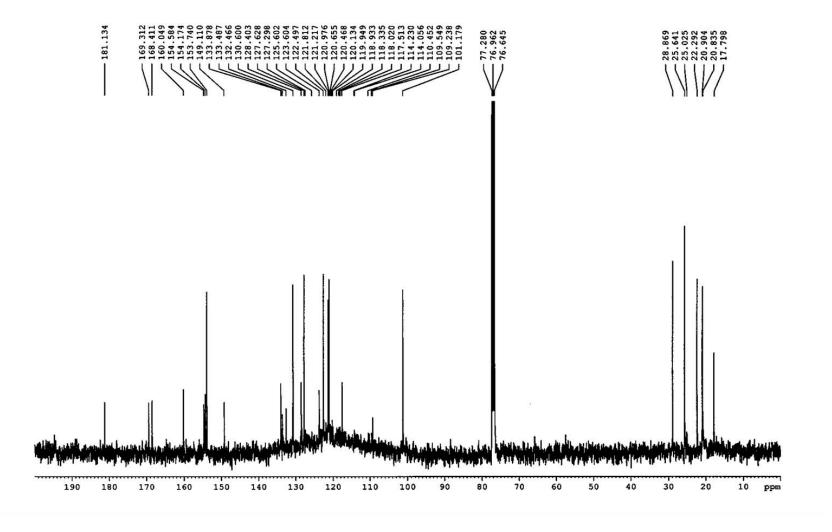


Figure 20a ¹³C-NMR Spectrum of Lupalbigenin 7,4'-di-*O*-methyl ether (135) in CDCl₃

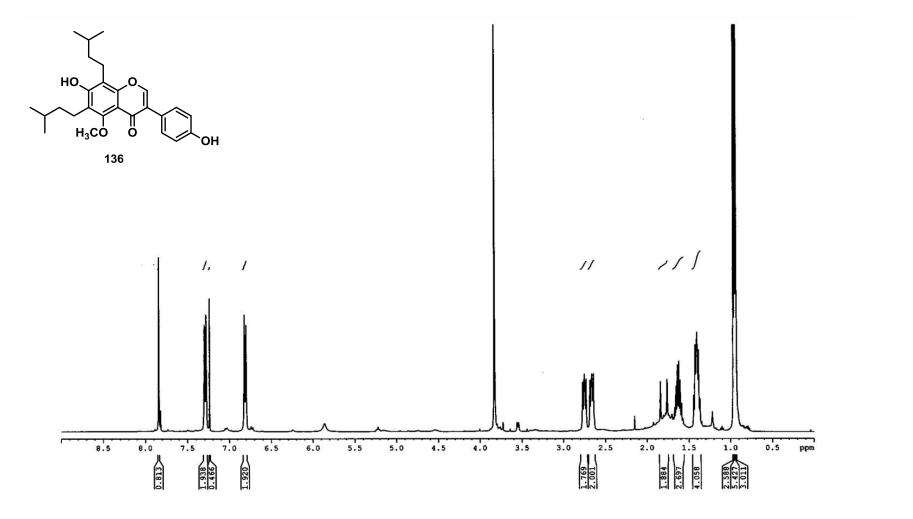


Figure 21 ¹H-NMR Spectrum of Tetrahydroderrisisoflavone A (136) in CDCl₃ + 2 Drops of CD₃OD

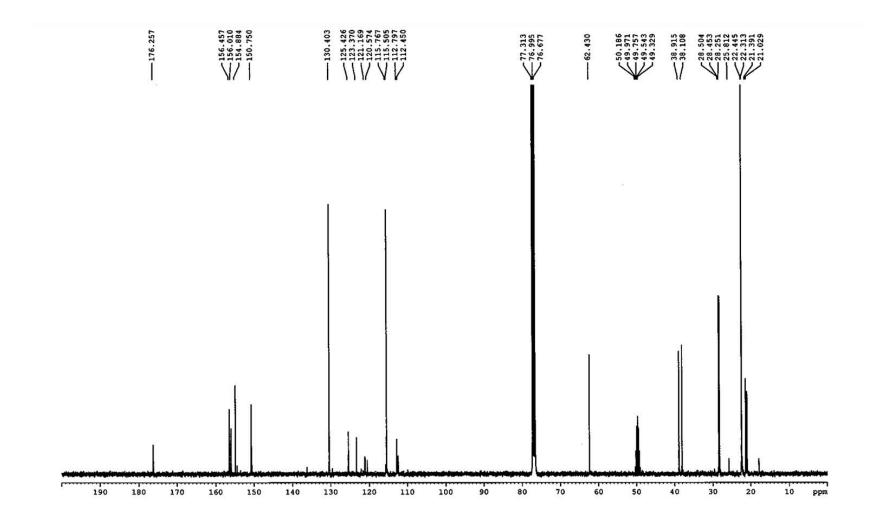


Figure 21a ¹³C-NMR Spectrum of Tetrahydroderrisisoflavone A (136) in CDCl₃ + 2 Drops of CD₃OD

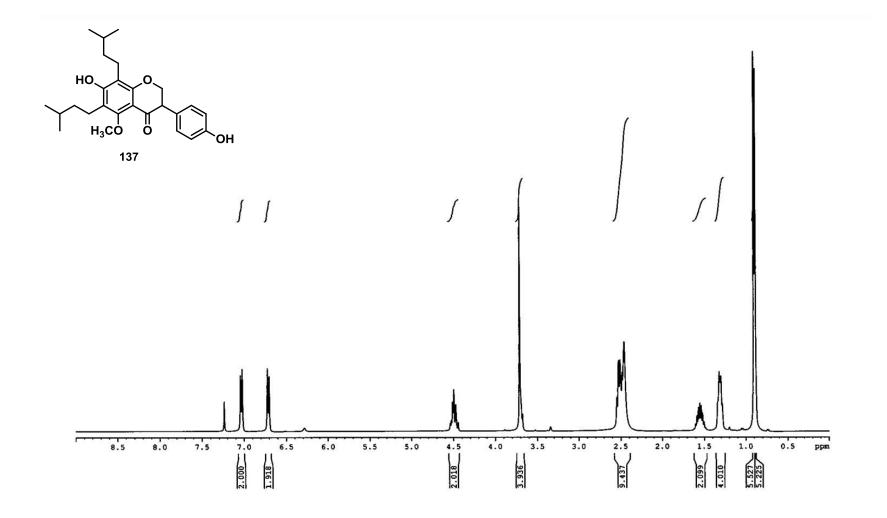


Figure 22 ¹H-NMR Spectrum of Hexahydroderrisisoflavone A (137) in CDCl₃ + 2 Drops of CD₃OD

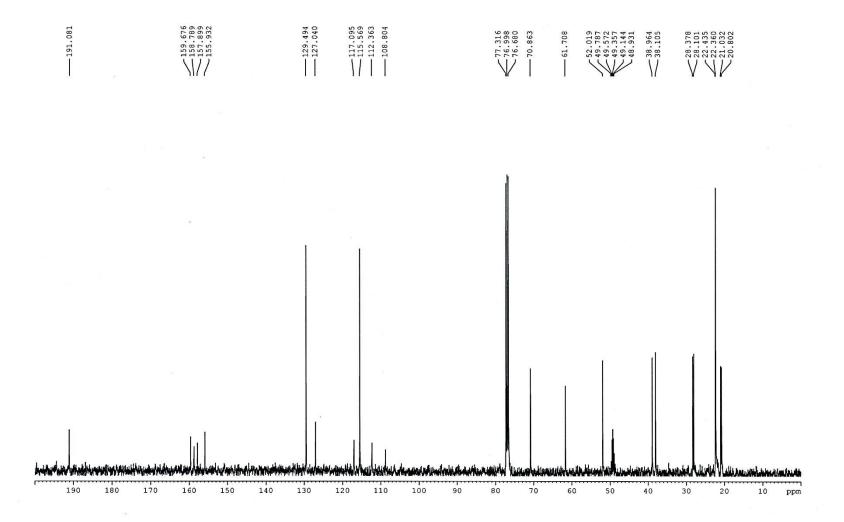


Figure 22a ¹³C-NMR Spectrum of Hexahydroderrisisoflavone A (137) in CDCl₃ + 2 Drops of CD₃OD

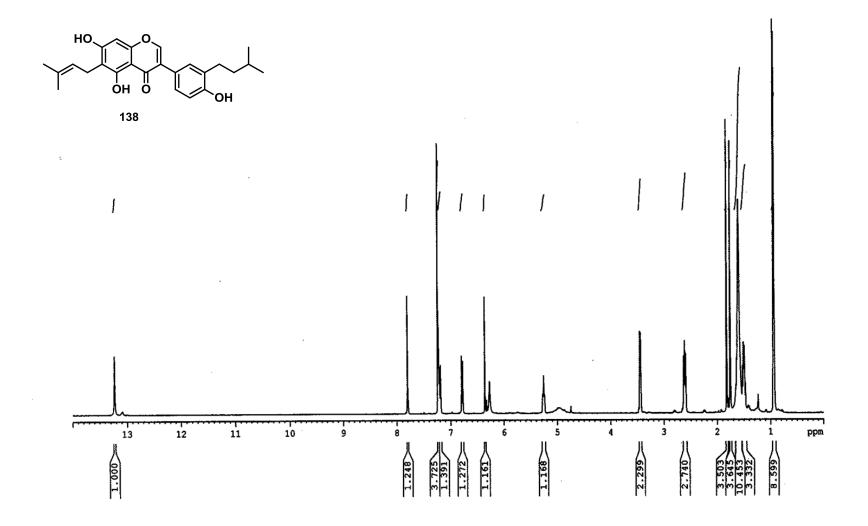


Figure 23 ¹H-NMR Spectrum of Dihydrolupalbigenin (**138**) in CDCl₃

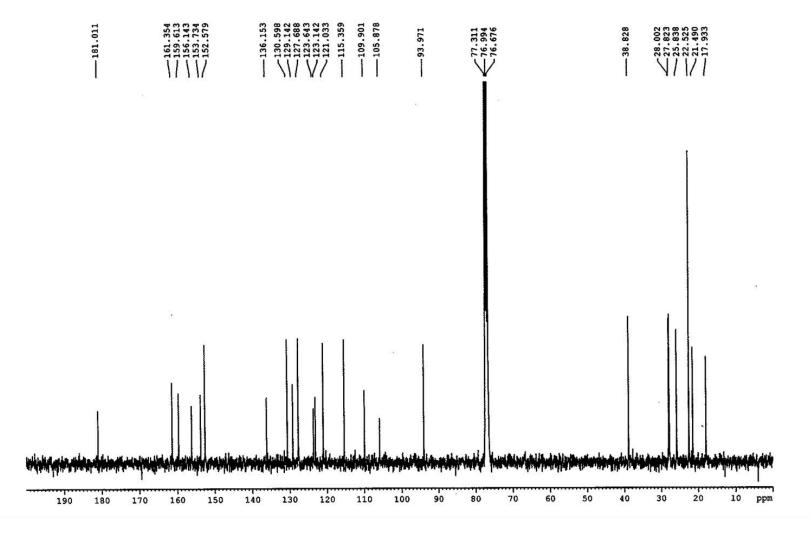


Figure 23a ¹³C-NMR Spectrum of Dihydrolupalbigenin (138) in CDCl₃

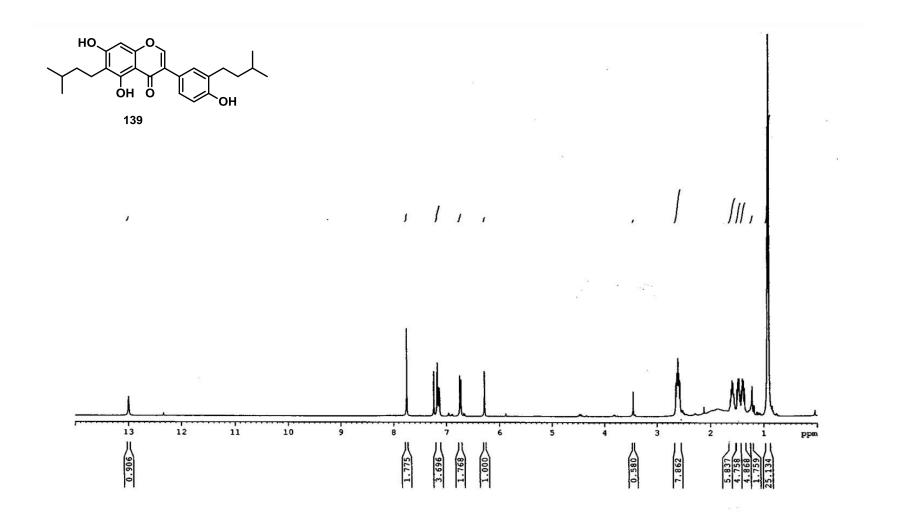


Figure 24 ¹H-NMR Spectrum of Tetrahydrolupalbigenin (**139**) in CD₃OD + CDCl₃

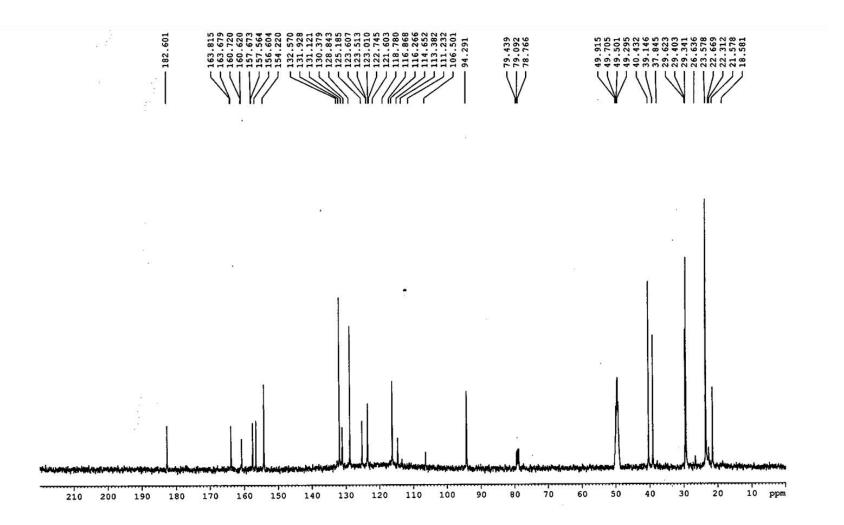


Figure 24a ¹³C-NMR Spectrum of Tetrahydrolupalbigenin (**139**) in CD₃OD + CDCl₃

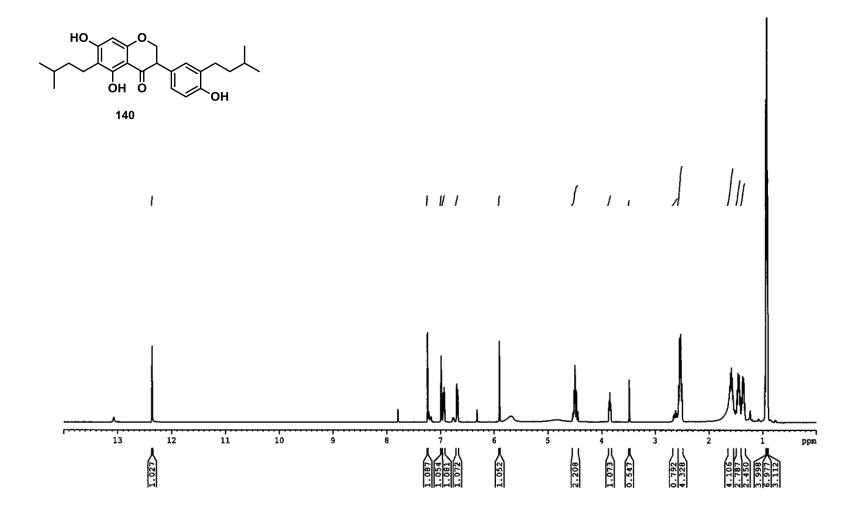


Figure 25 ¹H-NMR Spectrum of Hexahydrolupalbigenin (**140**) in CDCl₃



Figure 25a ¹³C-NMR Spectrum of Hexahydrolupalbigenin (**140**) in CDCl₃

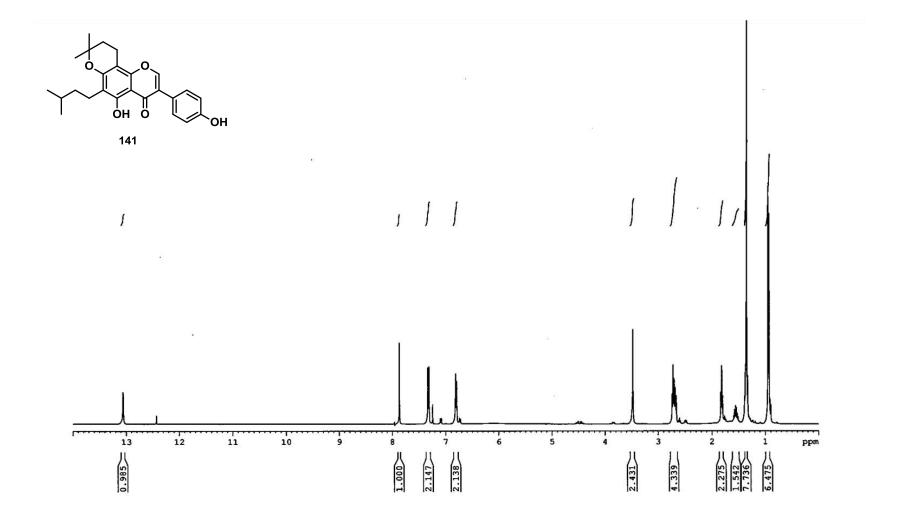


Figure 26 ¹H-NMR Spectrum of Tetrahydroosajin (**141**) in CDCl₃

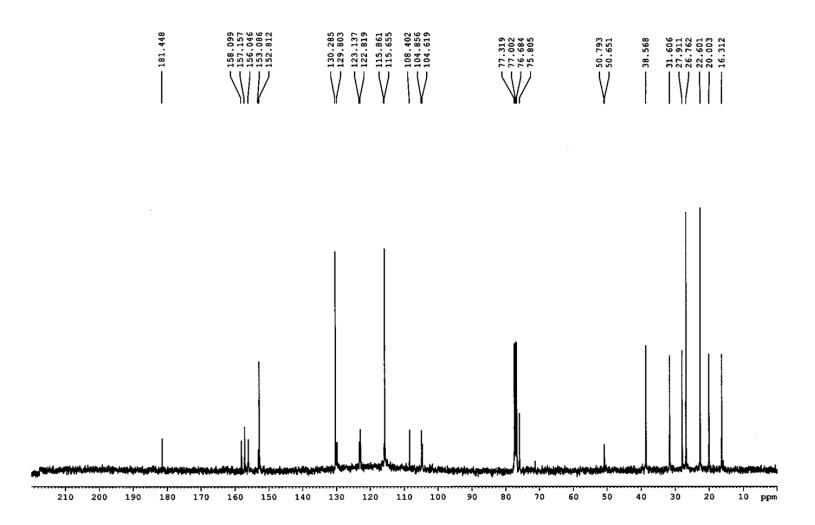


Figure 26a ¹³C-NMR Spectrum of Tetrahydroosajin (**141**) in CDCl₃

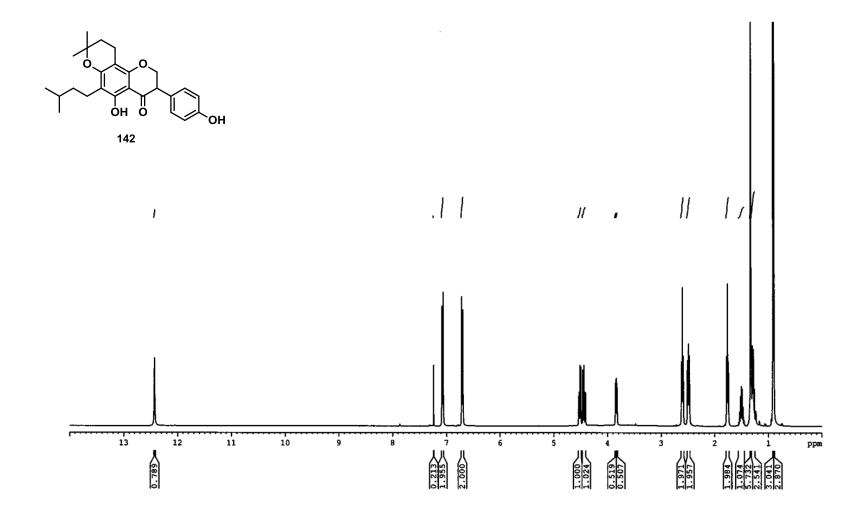


Figure 27 ¹H-NMR Spectrum of Hexahydroosajin (**142**) in CDCl₃

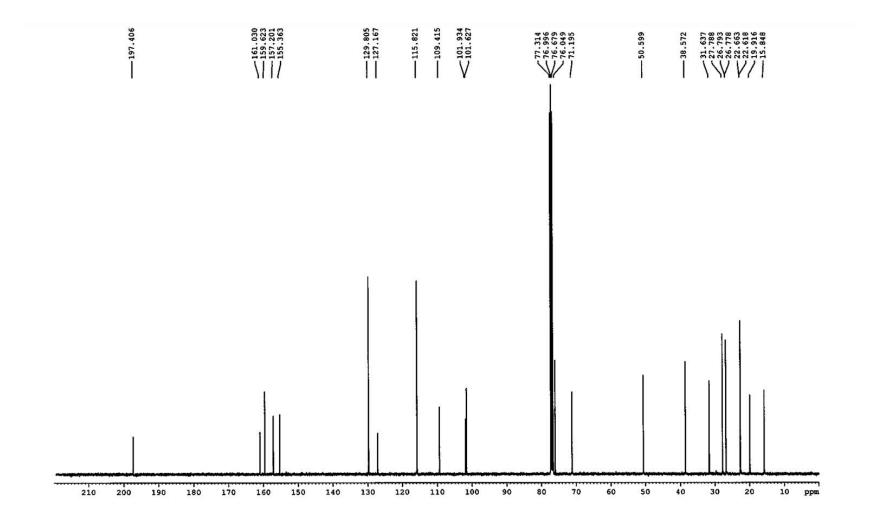


Figure 27a ¹³C-NMR Spectrum of Hexahydroosajin (**142**) in CDCl₃

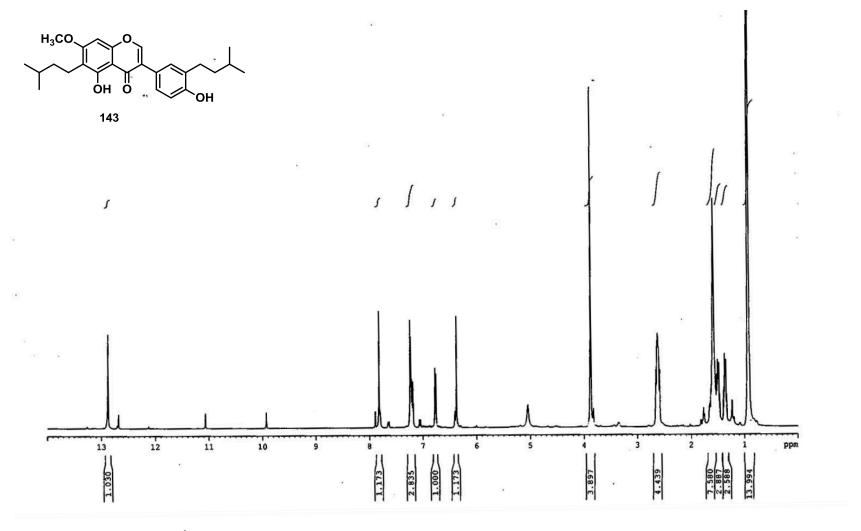


Figure 28 ¹H-NMR Spectrum of Tetrahydrolupalbigenin 7-*O*-methyl ether (**143**) in CDCl₃



Figure 28a ¹³C-NMR Spectrum of Tetrahydrolupalbigenin 7-*O*-methyl ether (**143**) in CDCl₃

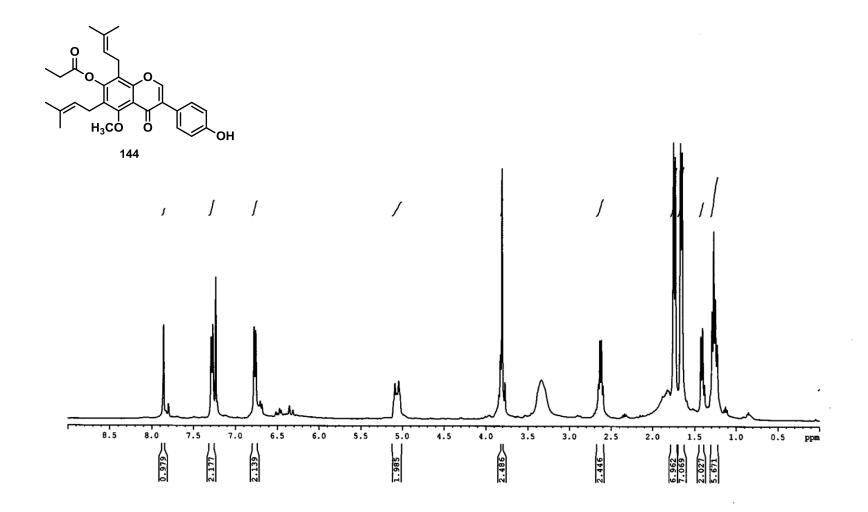


Figure 29 ¹H-NMR Spectrum of Derrisisoflavone A 7-*O*-propanoate (**144**) in CDCl₃

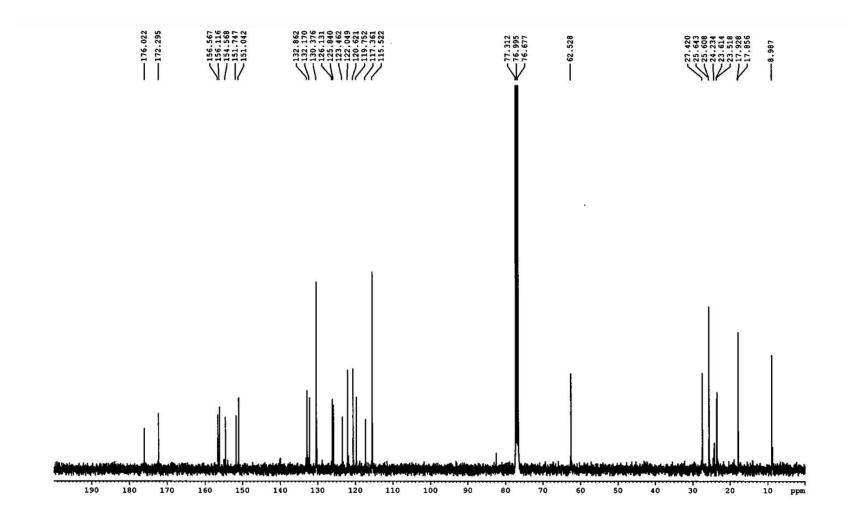


Figure 29a ¹³C-NMR Spectrum of Derrisisoflavone A 7-*O*-propanoate (**144**) in CDCl₃

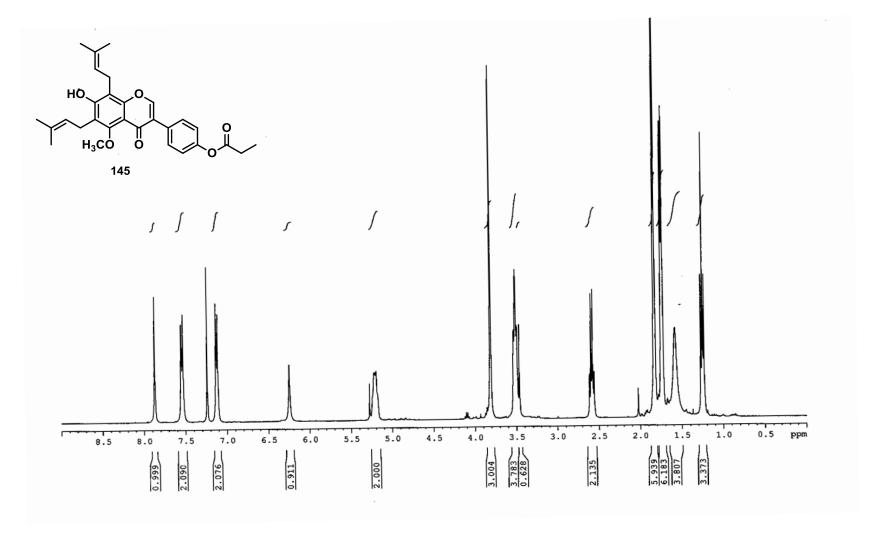


Figure 30 ¹H-NMR Spectrum of Derrisisoflavone A 4'-O-propanoate (**145**) in CDCl₃

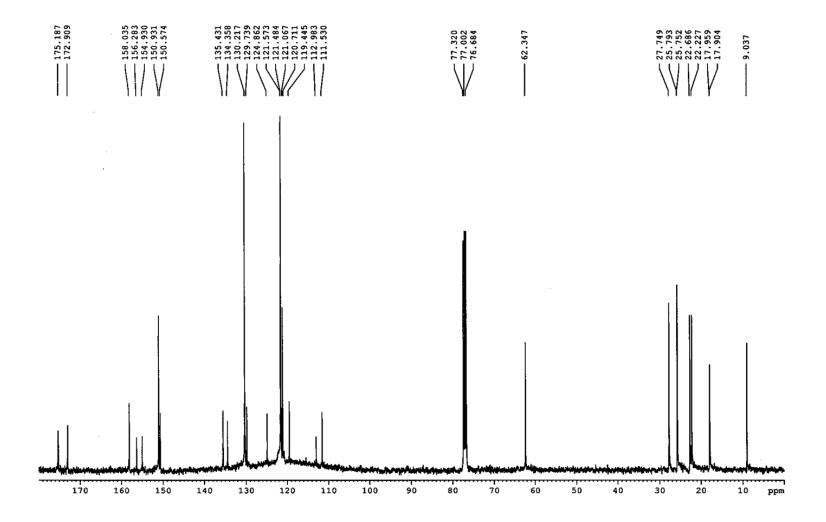


Figure 30a ¹³C-NMR Spectrum of Derrisisoflavone A 4'-O-propanoate (**145**) in CDCl₃

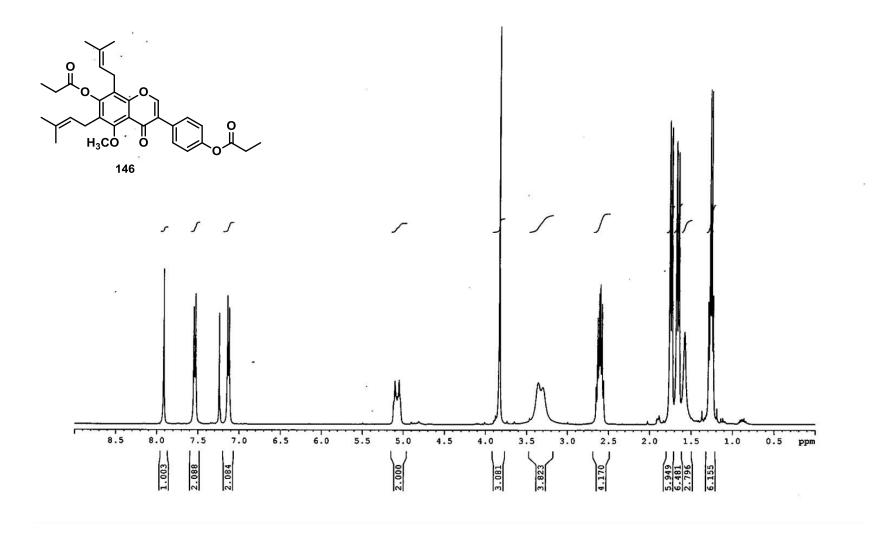


Figure 31 ¹H-NMR Spectrum of Derrisisoflavone A 7,4'-di-*O*-propanoate (**146**) in CDCl₃

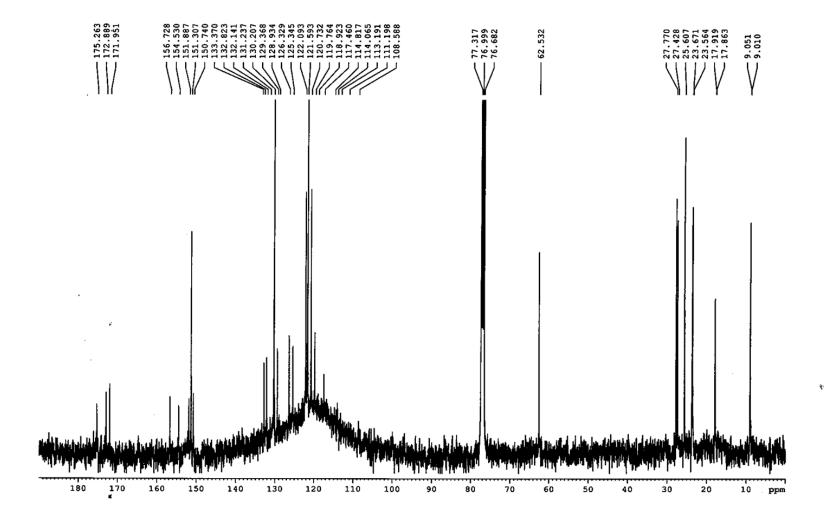


Figure 31a ¹³C-NMR Spectrum of Derrisisoflavone A 7,4'-di-*O*-propanoate (**146**) in CDCl₃

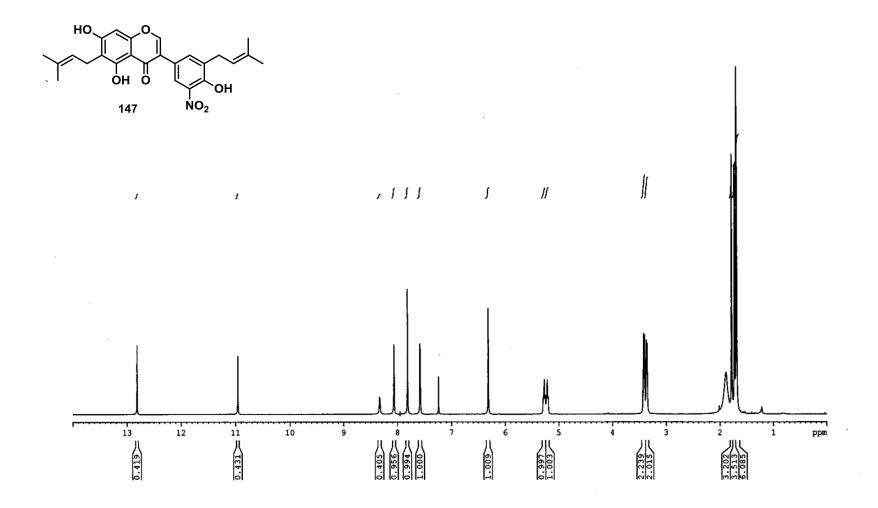


Figure 32 ¹H-NMR Spectrum of 5'-Nitrolupalbigenin (147) in CDCl₃ + 2 Drops of CD₃OD

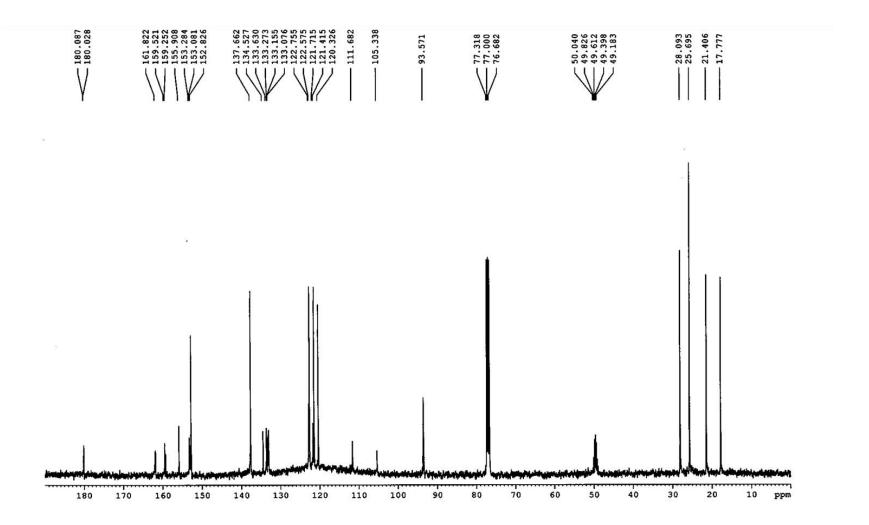


Figure 32a ¹³C-NMR Spectrum of 5'-Nitrolupalbigenin (147) in CDCl₃ + 2 Drops of CD₃OD

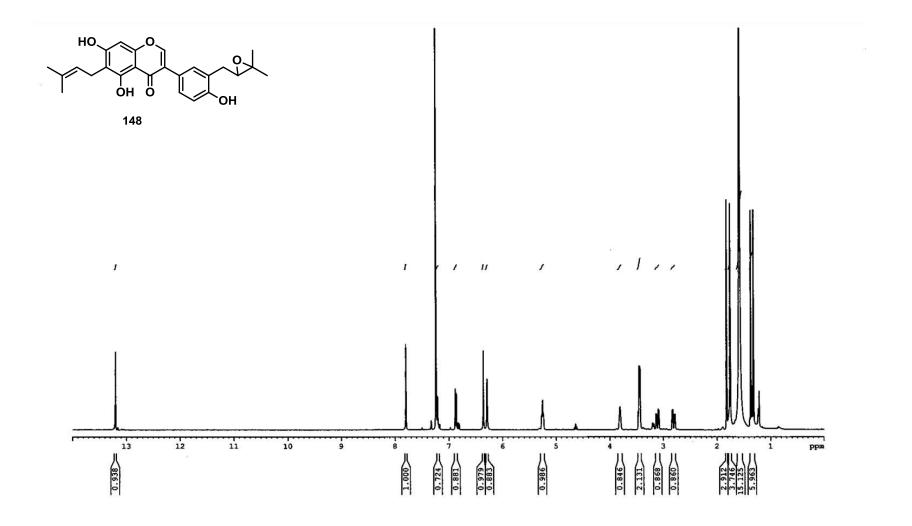


Figure 33 ¹H-NMR Spectrum of 2"',3"'-Epoxylupalbigenin (**148**) in CDCl₃

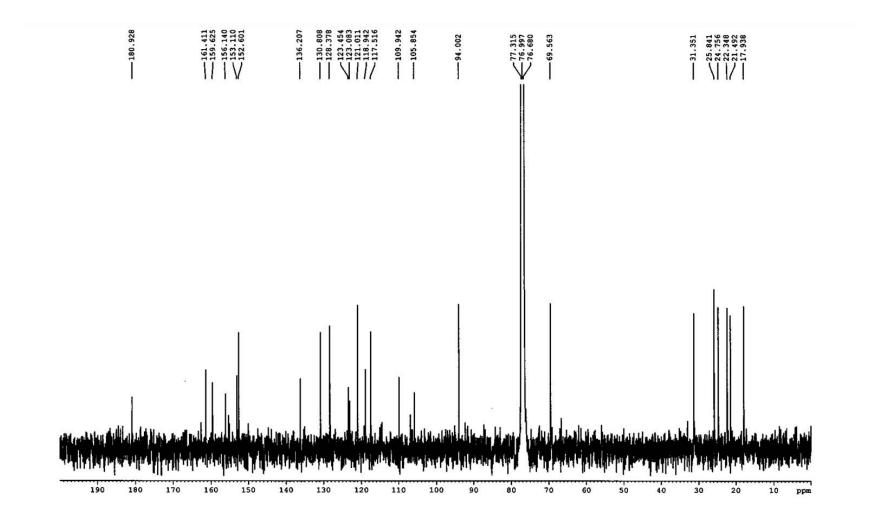


Figure 33a ¹³C-NMR Spectrum of 2''',3'''-Epoxylupalbigenin (**148**) in CDCl₃

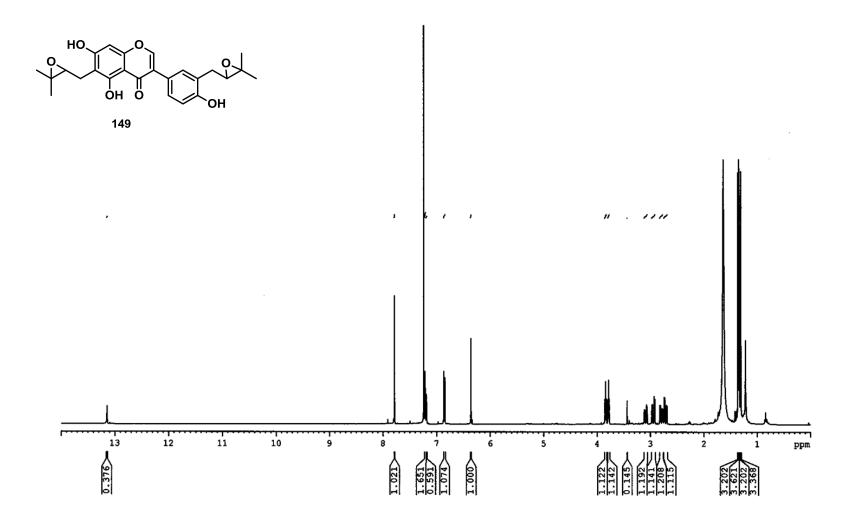


Figure 34 ¹H-NMR Spectrum of 2",3",2"",3""-Diepoxylupalbigenin (**149**) in CD₃OD

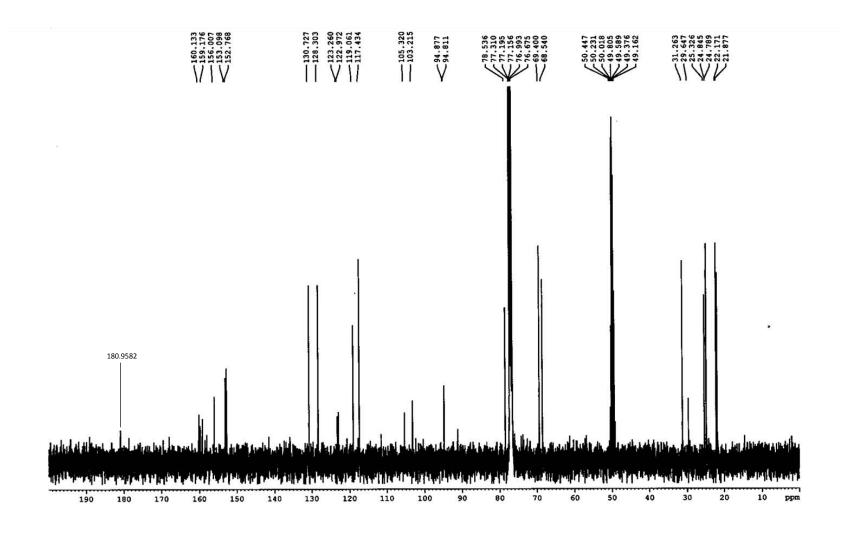


Figure 34a ¹³C-NMR Spectrum of 2",3",2"",3"'-Diepoxylupalbigenin (**149**) in CD₃OD

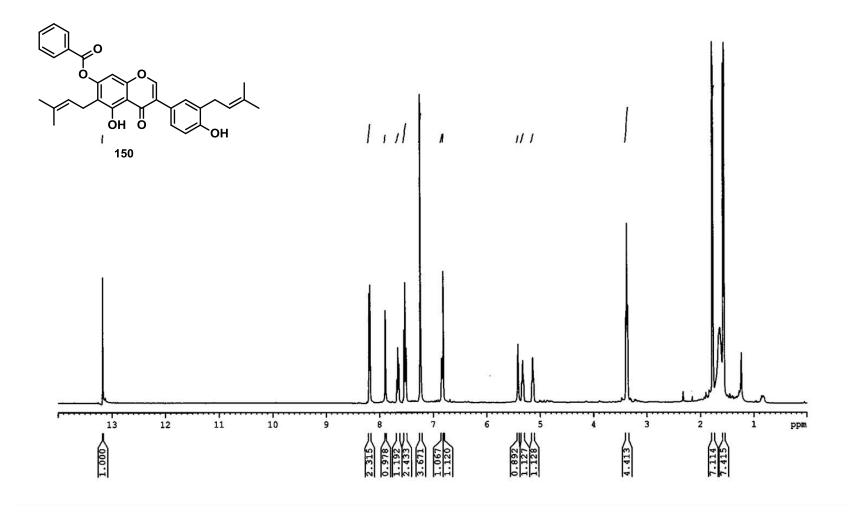


Figure 35 ¹H-NMR Spectrum of Lupalbigenin 7-*O*-benzoate (**150**) in CDCl₃

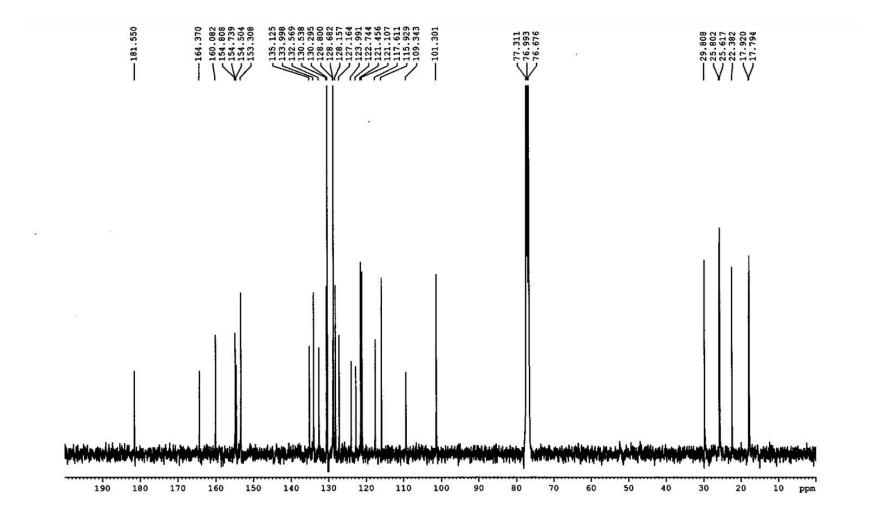


Figure 35a ¹³C-NMR Spectrum of Lupalbigenin 7-*O*-benzoate (**150**) in CDCl₃

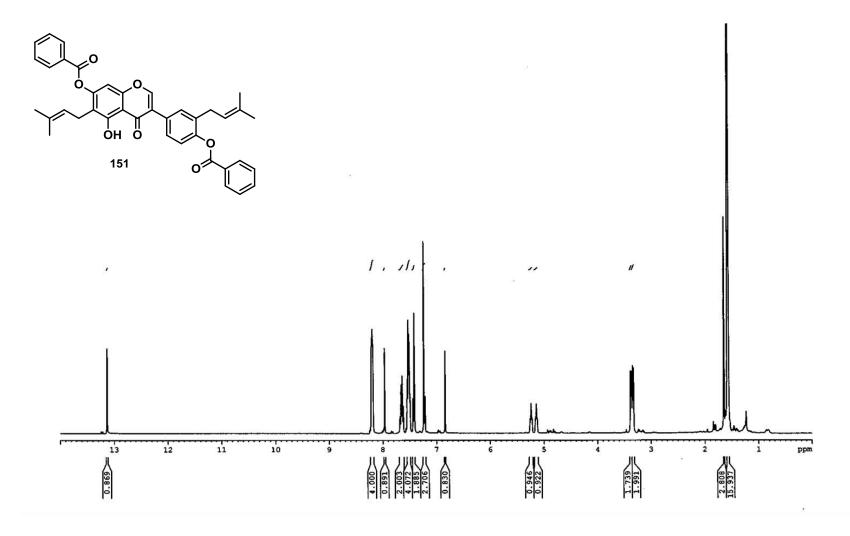


Figure 36 ¹H-NMR Spectrum of Lupalbigenin 7,4'-di-*O*-benzoate (**151**) in CDCl₃

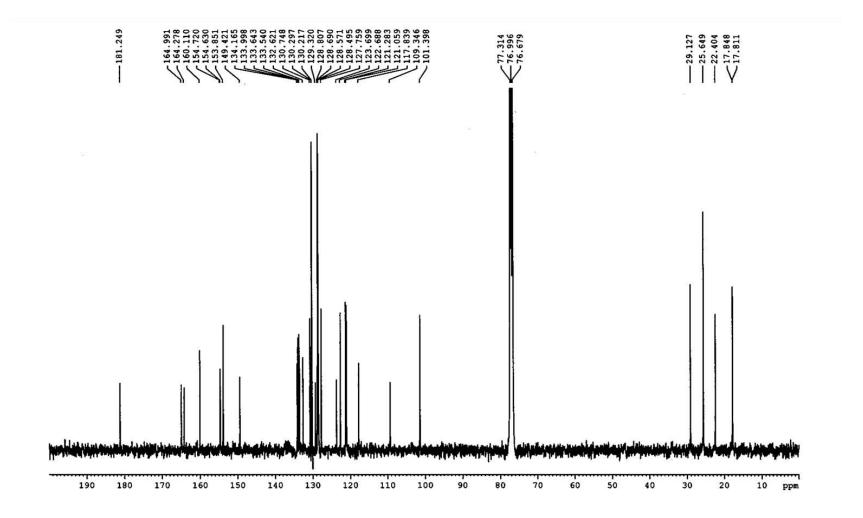


Figure 36a ¹³C-NMR Spectrum of Lupalbigenin 7,4'-di-*O*-benzoate (**151**) in CDCl₃

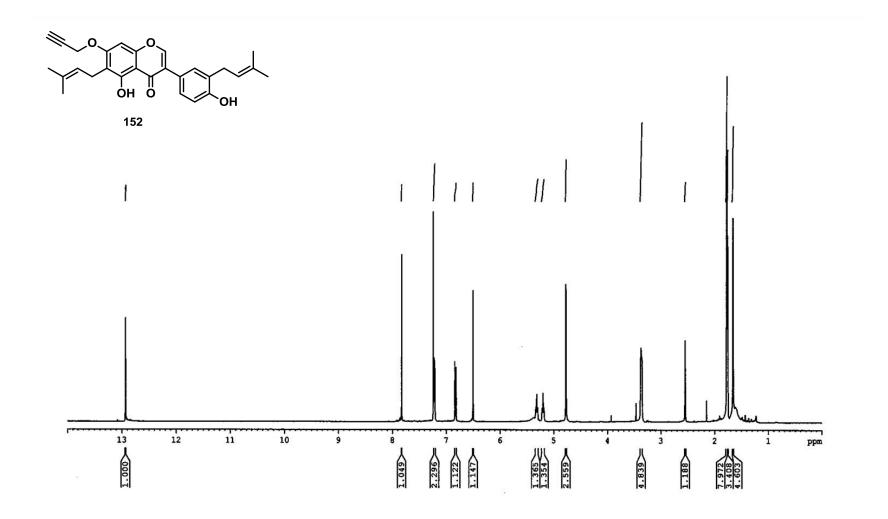


Figure 37 ¹H-NMR Spectrum of 7-*O*-Propargyllupalbigenin (**152**) in CDCl₃

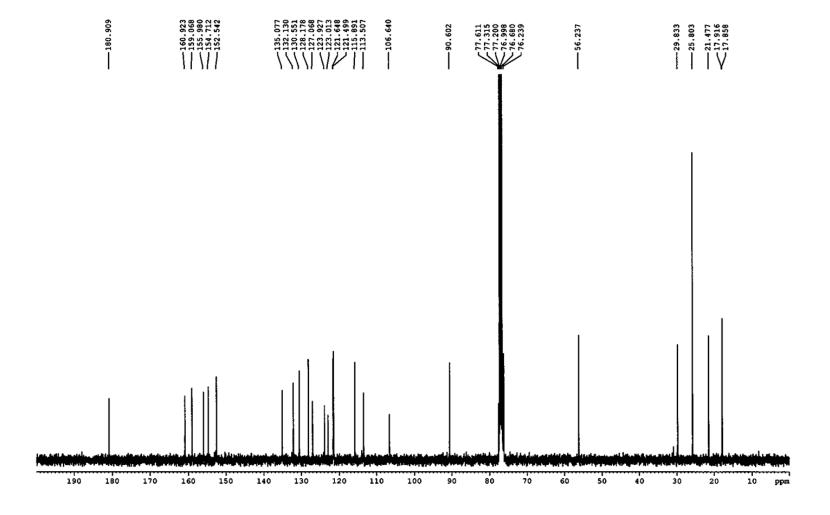


Figure 37a ¹³C-NMR Spectrum of 7-*O*-Propargyllupalbigenin (**152**) in CDCl₃

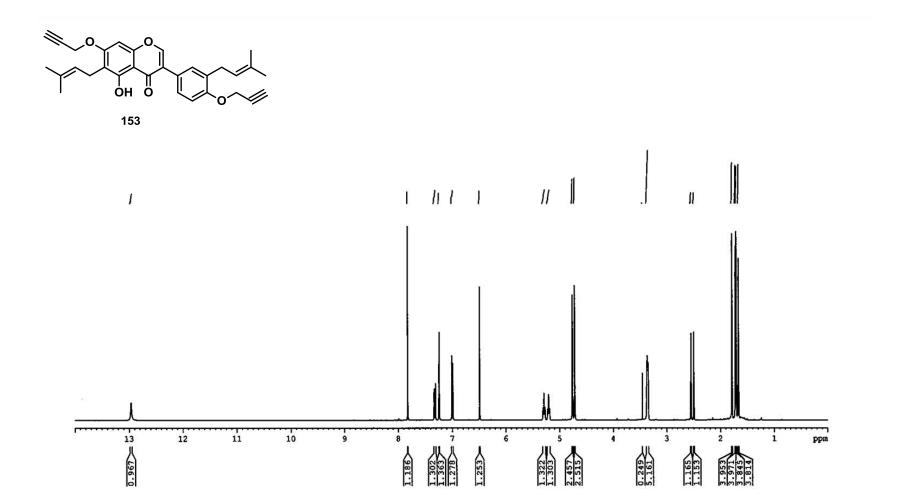


Figure 38 ¹H-NMR Spectrum of 7,4'-Di-*O*-propargyllupalbigenin (**153**) in CDCl₃

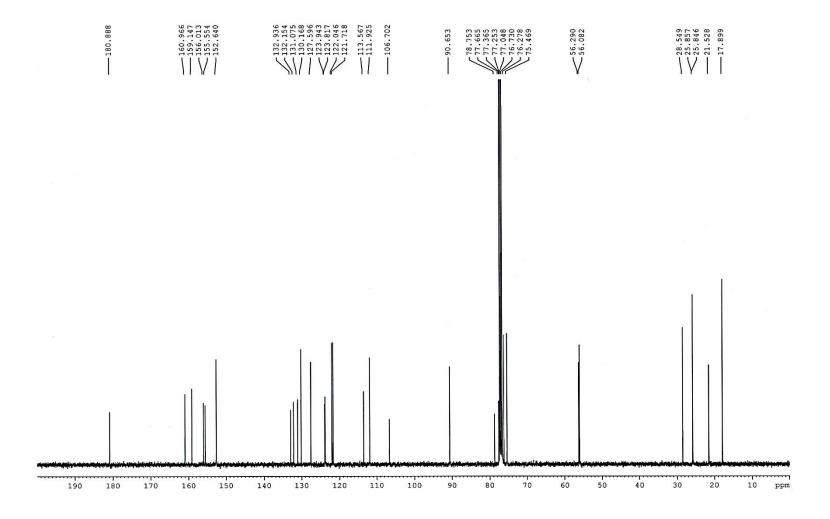


Figure 38a ¹³C-NMR Spectrum of 7,4'-Di-*O*-propargyllupalbigenin (**153**) in CDCl₃

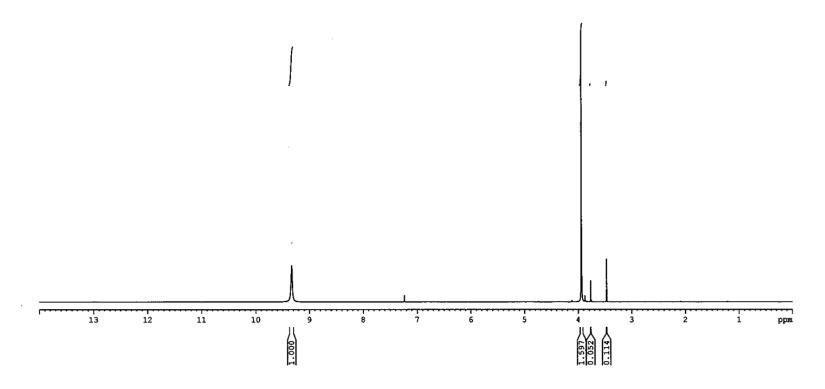


Figure 39 ¹H-NMR Spectrum of 2-Azidiacetic acid (**154**) in CDCl₃

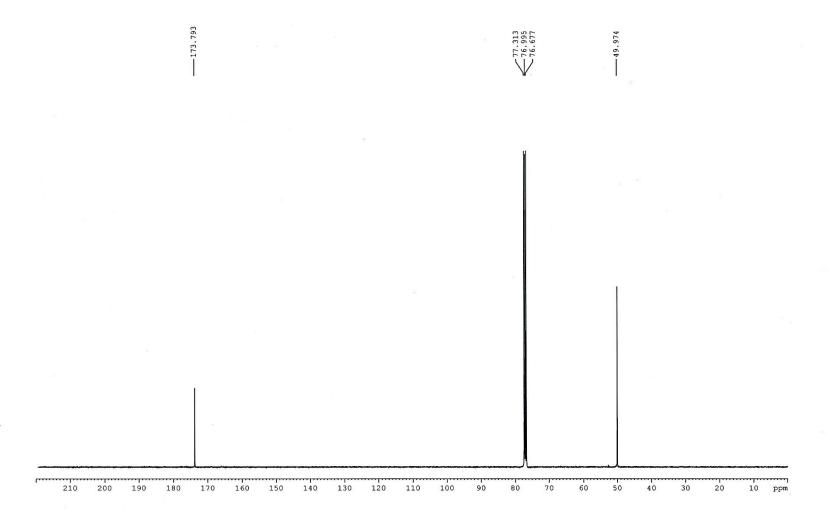


Figure 39a ¹³C-NMR Spectrum of 2-Azidiacetic acid (**154**) in CDCl₃

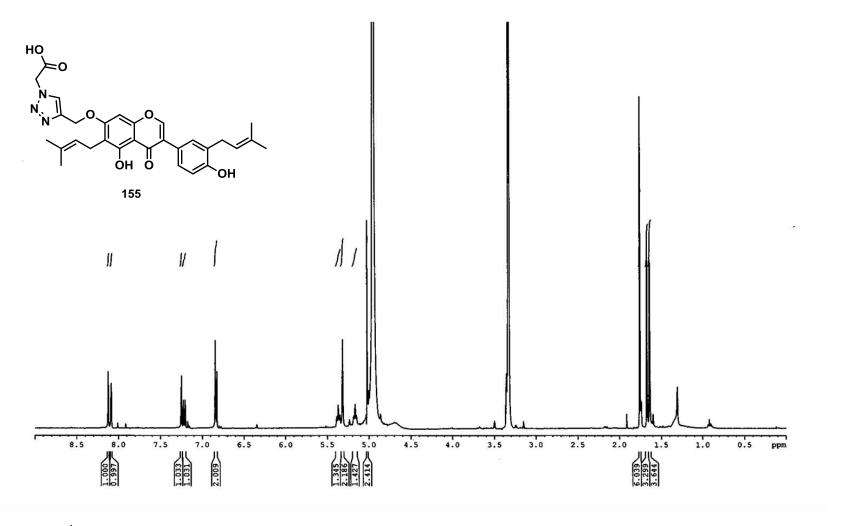


Figure 40 ¹H-NMR Spectrum of 7-*O*-[1""-(Carboxymethyl)-1"",*H*-3"",4"",5""-triazole]lupalbigenin (**155**) in CD₃OD

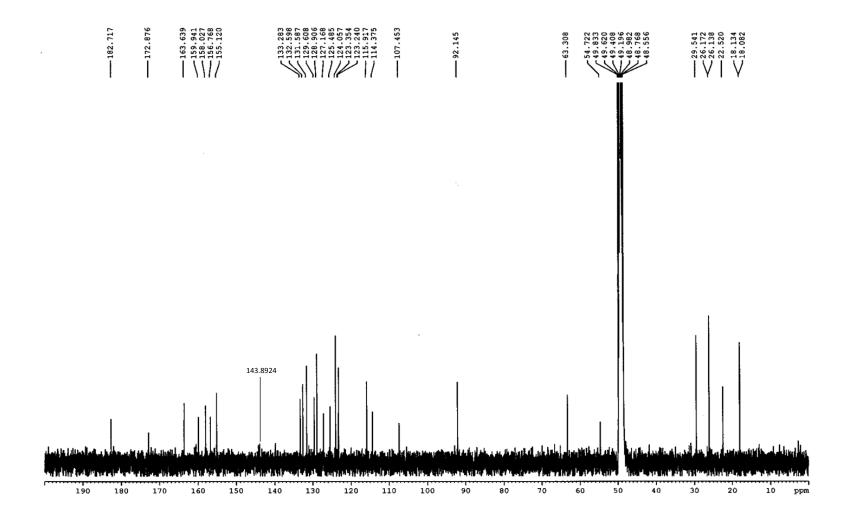


Figure 40a ¹³C-NMR Spectrum of 7-*O*-[1''''-(Carboxymethyl)-1'''',*H*-3'''',4'''',5''''-triazole]lupalbigenin (**155**) in CD₃OD

REFERENCES

- 1. Smitinand, T. 2001. **Thai plant names**. Bangkok: The Forest Herbarium, Royal Forest Department.
- Sekine, T., M. Inagaki, F. Ikegami, Y. Fujii, and N. Ruangrungsi. 1998. Six diprenylisoflavones, derrisisoflavones A-F, from *Derris scandens*.
 Phytochemistry 52: 87-94.
- 3. Rukachisirikul, V., Y. Sulpondma, C. Jansakul, and W. C. Taylor. 2002. Isoflavone glycosides from *Derris scandens*. **Phytochemistry** 60: 827-834.
- 4. Mahabusarakam, W., S. Deachathai, S. Phongpaichit, C. Janasakul, and W. C. Taylor. 2004. A benzyl and isoflavone derivatives from *Derris* scandens Benth. **Phytochemistry** 68: 1185-1191.
- 5. Ganapaty, S., J. S. Josaphine, and P. S. Thomas. 2006. Anti-inflammatory activity of *Derris scandens*. **J. Nat. Rem.** 6: 73-76.
- 6. Rao, S. A., P. V. Srinivas, A. K. Tiwari, U. M. S. Vanka, R. V. S. Rao, K. R. Dasari, and M. J. Rao. 2007. Isolation, characterization and chemobiological quantification of α-glucosidasw enzyme inhibitory and free radical scavenging constituents from *Derris scanedns* Benth. **J. Chromatogr. B.** 855: 166-172.
- Babu, T. H., A. K. Tiwari, V. R. S. Rao, A. Z. Ali, J. M. Rao, and K. S. Babu.
 2010. A new prenylated isoflavone from *Derris scandens* Benth. J. Asian Nat.
 Prod. Res. 12: 634-638.

- 8. Sriwanthana, B., and P. Chavalittumrong. 2001. In vitro effect of *Derris scandens* on normal lymphocyte proliferation and its activities on natural killer cells in normal and HIV-1 infected patients. **J. Ethnopharamacol.** 76: 125-129.
- 9. Lu, H. Y., J. Y. Liang, P. Yu, W. Qu, and L. Zhao. 2008. Two new rotenoids from the root of *Derris elliptica*. **Chin. Chem. Lett.** 19: 1218-1220.
- 10. Lu, H. Y., and J. Y. Liang. 2009. Novel N-containing rotenoid and *seco*-ronoid from the root of *Derris elliptica*. **J. Asian Nat. Prod. Res.** 11: 58-62.
- 11. Wu, X., Z. Song, H. Xu, H. Zhang, W. Chen, and H. Liu. 2012. Chemical constituents of the aerial part of *Derris elliptica*. **Fitoterapia** 83: 732-736.
- 12. Telekone, R. S., and M. Khan. 2014. Antiinflammatory and antioxidant activity of extracts and isolated compounds from *Derris brevipes* Benth (Baker). **J. Phytopharm.** 3: 180-192.
- Koysombon, S., I. V. Altena, S. Kato, and K. Chantrapromma. 2006.
 Antimycobacterial flavonoids from *Derris indica*. **Phytochemistry** 67: 1034-1040.
- 14. Decharchochart, P., J. Suthiwong, P. Samatiwat, V. Kukongviriyapan, and C. Yenjai. 2014. Cytotoxicity of compounds from the fruits of *Derris indica* against cholangiocarcinoma and HepG2 cell lines. J. Nat. Med. 68: 730-736.

- 15. Anusiri, P., S. Choodej, P. Chumriang, S. Adisakwattana, and K. Pudhom. 2014. Inhibitory effects of flavonoids from stem bark of *Derris indica* on the formation of advanced glycation end products. **J. Ethnopharamocol.** 158: 437-441.
- 16. Takashima, J., N. Chiba, K. Yoneda, and A. Onsaki. 2002. Derrisin, A new rotenoid from *Derris malaccensis* plain and anti-*Helicobacterpylori* activity of its related constituents. **J. Nat. Prod.** 65: 611-613.
- 17. Ellman, G. L., K. D. Courtney, V. Andres, and R. M. Featherstone. 1961.

 A new and rapid colorimetric determination of acetylcholinesterase activity. **Biochem. Pharma.** 7: 88-95.
- 18. Bolognesi, M. L., R. Banzi, M. Bartolini, A. Cavalli, A. Tarozzi, V. Andrisano, A. Minarini, M. Rosini, V. Tumiatti, C. Bergamini, R. Fato, G. Lenaz, P. Hrelia, A. Cattaneo, M. Recanatini, and C. Melchiorre. 2007. Novel class of quinone-bearing polyamines as multi-target-directed ligands to combat alzheimer's disease. J. Med. Chem. 50: 4882-4897.
- 19. Mizuno, M., N. Matsuura, M. Iinuma, T. Tanaka, and C. Phengklai. 1990. Isoflavones from stems of *Euchresta Horsfieldii*. **Phytochemistry** 29: 2675-2677.
- 20. Johnson, A. P., A. Pelter, and P. Stainton. 1966. Extractives from *Derris scandens*. Part I. The structures of scandenin and lonchocatpic acid. J. Chem. Soc. 192-203.
- 21. Jain, A. C., P. Lal, and T. R. Seshadri. 1969. A study of nuclear prenylation and allylation of isoflavones and synthesis of 4'-methyl ethers of osajin and warangalone. **Tetrahedron** 26: 1977-1988.

22. Dyke, J. M., A. P. Groves, A. Morris, J. S. Ogden, A. A. Dias, A. M. S. Oliveira, M. L. Costa, M. T. Baros, M. H. Cabral, and A. M. C. Moutinho. 1997. Study of the Thermal Decomposition of 2-Azidoacetic Acid by Photoelectron and Matrix Isolation Infrared Spectroscopy. J. Am. Chem. Soc. 119: 6883-6887.

VITAE

Name Mr. Yuttana Siriwattanasathien

Date of Birth December 6, 1991

Place of Birth Bangkok

Previous Studies Certificate, 2009

Rattanakosinsomphod Bangkunthian School

Bangkok, Thailand

Bachelor of Science (Chemistry), 2013

University of Phayao, Phayao, Thailand