

INTRODUCTORY QUANTUM OPTICS

SECOND EDITION

Christopher C. Gerry
Peter L. Knight

Contents

<i>Preface</i>	<i>page</i> xiii
<i>Acknowledgments</i>	xv
1 Introduction	1
1.1 Scope and Aims of This Book	1
1.2 History	2
1.3 Contents of This Book	7
2 Field Quantization	11
2.1 Quantization of a Single-Mode Field	11
2.2 Quantum Fluctuations of a Single-Mode Field	17
2.3 Quadrature Operators for a Single-Mode Field	18
2.4 Multimode Fields	20
2.5 Thermal Fields	28
2.6 Vacuum Fluctuations and the Zero-Point Energy	32
2.7 The Quantum Phase	37
Problems	45
3 Coherent States	50
3.1 Eigenstates of the Annihilation Operator and Minimum Uncertainty States	50
3.2 Displaced Vacuum States	56
3.3 Wave Packets and Time Evolution	58
3.4 Generation of Coherent States	60
3.5 More on the Properties of Coherent States	61
3.6 Phase-Space Pictures of Coherent States	65
3.7 Density Operators and Phase-Space Probability Distributions	68
3.8 The Photon Number Parity Operator and the Wigner Function	75
3.9 Characteristic Functions	78
Problems	85
4 Emission and Absorption of Radiation by Atoms	89
4.1 Atom-Field Interactions	89
4.2 Interaction of an Atom with a Classical Field	91
4.3 Interaction of an Atom with a Quantized Field	97
4.4 The Rabi Model	102

4.5	Fully Quantum Mechanical Model: The Jaynes–Cummings Model	105
4.6	The Dressed States	115
4.7	Density Operator Approach: Application to Thermal States	119
4.8	The Jaynes–Cummings Model with Large Detuning: A Dispersive Interaction	123
4.9	Extensions of the Jaynes–Cummings Model	125
4.10	Schmidt Decomposition and Von Neumann Entropy for the Jaynes–Cummings Model	126
	Problems	129
5	Quantum Coherence Functions	134
5.1	Classical Coherence Functions	134
5.2	Quantum Coherence Functions	139
5.3	Young’s Interference	143
5.4	Higher-Order Coherence Functions	146
	Problems	153
6	Beam Splitters and Interferometers	155
6.1	Experiments with Single Photons	155
6.2	Quantum Mechanics of Beam Splitters	157
6.3	Interferometry with a Single Photon	173
6.4	Interaction-Free Measurement	175
6.5	Interferometry with Coherent States of Light	177
6.6	The SU(2) Formulation of Beam Splitting and Interferometry	179
6.7	The Beam Splitter as a Displacer	185
6.8	Photons Do Not Interfere	186
6.9	Are Photons Entangled?	186
	Problems	187
7	Nonclassical Light	191
7.1	Quadrature Squeezing	191
7.2	Generation of Quadrature Squeezed Light	207
7.3	Detection of Quadrature Squeezed Light	209
7.4	Amplitude (or Number) Squeezed States	211
7.5	Photon Antibunching	213
7.6	Schrödinger-Cat States	216
7.7	Two-Mode Squeezed Vacuum States	226
7.8	Broadband Squeezed Light	232
7.9	Pair Coherent States	233
7.10	Entanglement Generation via Beam Splitting	238
7.11	Quantum State Engineering: Generation of Nonclassical States by Photon-Level Operations	239
	Problems	248

8	Dissipative Interactions and Decoherence	257
8.1	Introduction	257
8.2	Single Realizations or Ensembles?	258
8.3	Individual Realizations	262
8.4	Shelving and Telegraph Dynamics in Three-Level Atoms	266
8.5	Modeling Losses with Fictitious Beam Splitters	270
8.6	Decoherence	272
8.7	Generation of Coherent States from Decoherence: Nonlinear Optical Balance	275
8.8	Conclusions	276
	Problems	277
9	Optical Test of Quantum Mechanics	280
9.1	Photon Sources: Spontaneous Parametric Down-Conversion	281
9.2	The Hong–Ou–Mandel Interferometer	285
9.3	The Quantum Eraser	287
9.4	Induced Coherence	290
9.5	Superluminal Tunneling of Photons	293
9.6	Optical Test of Local Realistic Theories and Bell’s Theorem	294
9.7	Franson’s Experiment	301
9.8	Applications of Down-Converted Light to Metrology without Absolute Standards	303
	Problems	305
10	Experiments in Cavity QED and with Trapped Ions	308
10.1	Rydberg Atoms	308
10.2	Rydberg Atom Interacting with a Cavity Field	311
10.3	Experimental Realization of the Jaynes–Cummings Model	316
10.4	Creating Entangled Atoms in CQED	318
10.5	Formation of Schrödinger-Cat States with Dispersive Atom–Field Interactions and Decoherence from the Quantum to the Classical	320
10.6	Quantum Non-demolition Measurement of Photon Number	325
10.7	Quantum State Engineering in the Resonant Jaynes–Cummings Model	326
10.8	Realization of the Jaynes–Cummings Interaction in the Motion of a Trapped Ion	328
10.9	Concluding Remarks	332
	Problems	333

11 Applications of Entanglement: Heisenberg-Limited Interferometry and Quantum Information Processing	338
11.1 The Entanglement Advantage	340
11.2 Two No-Go Theorems: No-Signaling and No-Cloning	341
11.3 Entanglement and Interferometric Measurements	343
11.4 Quantum Teleportation	353
11.5 Cryptography	355
11.6 Private Key Crypto-systems	357
11.7 Public Key Crypto-systems	358
11.8 The Quantum Random Number Generator	360
11.9 Quantum Cryptography	364
11.10 Future Prospects for Quantum Communication	370
11.11 Gates for Quantum Computation	370
11.12 An Optical Realization of Some Quantum Gates	376
11.13 Decoherence and Quantum Error Correction Problems	380
	381
<i>Appendix A The Density Operator, Entangled States, the Schmidt Decomposition, and the Von Neumann Entropy</i>	386
A.1 The Density Operator	386
A.2 Two-State System and the Bloch Sphere	389
A.3 Entangled States	390
A.4 Schmidt Decomposition	392
A.5 Von Neumann Entropy	394
A.6 Dynamics of the Density Operator	395
<i>Appendix B Quantum Measurement Theory in a (Very Small) Nutshell</i>	398
<i>Appendix C Derivation of the Effective Hamiltonian for Dispersive (Far Off-Resonant) Interactions</i>	402
<i>Appendix D Nonlinear Optics and Spontaneous Parametric Down-Conversion</i>	406
<i>Index</i>	408