Contents | Aboui
Prefac | ibutors
t the editors
ce, objective, and overview of the book | xi
xv
xvii | |-----------------|---|---| | Ackne | owledgments for the second edition | xix | | SEC | TION A Harness the big data from power systems | | | 1. | A holistic approach to becoming a data-driven utility John D. McDonald | 3 | | | 1.1 Introduction 1.2 Aligning internal and external stakeholders 1.3 Taking a holistic approach 1.4 "Strong" first, then "smarter" 1.5 Implementing an "Observability Strategy" 1.6 Increasing visibility with IEDs 1.7 Network response requirements 1.8 Integration before automation 1.9 Functional data paths: Keep it simple 1.10 From sensor to end user: The process 1.11 Customers > consumers > prosumers 1.12 New sources of data: Robotics and UAVs 1.13 Extracting value from data and presenting it 1.14 The transformation 1.15 Three case studies 1.16 Frankfort, Kentucky, and greenfield SCADA, SA 1.17 Unmanned aerial vehicles for vegetation management 1.18 Robotics for substation asset management 1.19 Conclusion 1.20 Looking ahead References | 3 6 6 7 8 100 111 144 155 166 177 211 23 244 255 266 28 30 32 33 34 | | 2. | Security and data privacy challenges for data-driven utilities Carol L. Stimmel | 37 | | | 2.1 Introduction2.2 Case studies: The state and scope of the threat | 37
38 | | V | VI | | |---|----|--| Contents | | 2.3 The digitized network increases vulnerability | 44 | |----|--|----------| | | 2.4 The role of data analytics | 48 | | | 2.5 Conclusion | 50 | | | References | 51 | | 3. | The role of big data and analytics in utilities innovation | 53 | | | Jeffrey S. Katz | | | | 3.1 Introduction of big data and analytics as an accelerator of | p= 14 | | | innovation 3.2 Approaches to data-driven innovation | 53
55 | | | 3.3 Integration of renewable energy | 57 | | | 3.4 Grid operations | 59 | | | 3.5 Cognitive computing on big data | 63 | | | 3.6 Weather, the biggest data topic for power systems | 65 | | | References | 67 | | | Further reading | 68 | | 4. | Big data integration for the digitalization and decarbonization | | | ٠, | of distribution grids | 69 | | | Nuran Cihangir Martin, Tania M. Vazquez Sanchez, Selene Liverani, and Anita Gianelli | | | | 4.1 Introduction: Challenges toward a net-zero economy | 69 | | | 4.2 Grid observability and controllability | 72 | | | 4.3 Key drivers of the digital transformation in distribution grids | 75 | | | 4.4 Losses and fault detection | 81 | | | 4.5 Conclusions | 84 | | | References | 85 | | | Further reading | 86 | | SE | CTION B Put the power of big data into power systems | | | 5. | Topology detection in distribution networks with machine | | | | learning | 89 | | | Deepjyoti Deka and Michael Chertkov | | | | 5.1 Introduction | 89 | | | 5.2 Distribution grid: Structure and power flows | 92 | | | 5.3 Properties of voltage magnitudes in radial grids | 95 | | | 5.4 Topology learning with full observation | 98 | | Contents | 1 | |------------|---| | CHIPHIS | | | COTTECTION | | | | 5.5 Topology learning with missing data5.6 Experiments5.7 ConclusionsReferences | 100
104
107
107 | |----|---|--| | 6. | Grid topology identification via distributed statistical hypothesis testing Saverio Bolognani and Keith Moffat | 109 | | | 6.1 Introduction6.2 Power distribution grid model6.3 Voltage conditional correlation analysis6.4 A distributed topology test6.5 ConclusionsReferences | 109
111
113
124
131
132 | | 7. | Learning stable local Volt/Var controllers in distribution
grids
Zhenyi Yuan, Guido Cavraro, and Jorge Cortés | 135 | | | 7.1 Introduction 7.2 Grid modeling and problem formulation 7.3 Equilibrium functions depending only on voltage 7.4 Equilibrium functions with reactive power as an additional argument 7.5 Learning equilibrium functions from data 7.6 Case study 7.7 Conclusions Acknowledgments References | 135
138
143
146
147
150
157
157 | | 8. | Grid-edge optimization and control with machine learning Anamika Dubey, Daniel Glover, and Gayathri Krishnamoorthy 8.1 Introduction 8.2 Optimal power flow methods for grid-edge coordination 8.3 Learning-based control/optimization at the grid edge 8.4 Future research directions | 161
161
162
167
18 | | | References | 184 | Contents | 9. | Fault detection in distribution grid with spatial-temporal recurrent graph neural networks | 189 | |-----|--|-----| | | Bang Nguyen and Tuyen Vu | | | | 9.1 Introduction | 189 | | | 9.2 Use case and data description | 192 | | | 9.3 Methodology | 196 | | | 9.4 Results and discussions | 204 | | | 9.5 Conclusion and future work | 211 | | | References | 212 | | | Further reading | 215 | | 10. | Supervised learning-based fault location in power | | | | grids | 217 | | | Hanif Livani | | | | 10.1 Fundamentals of SVM | 217 | | | 10.2 Power system applications of SVM | 220 | | | 10.3 Fault classification and location for three-terminal transmission | | | | lines | 222 | | | 10.4 Fault location for hybrid HVAC transmission lines | 229 | | | 10.5 Summary References | 233 | | | neierences | 233 | | 11. | Transient stability predictions in modern power systems using | | | | transfer learning | 235 | | | Maeshal Hijazi, Payman Dehghanian, and Shiyuan Wang | | | | 11.1 Introduction | 235 | | | 11.2 Background | 240 | | | 11.3 The proposed framework | 245 | | | 11.4 Numerical tests and analysis | 250 | | | 11.5 Conclusions References | 264 | | | References | 265 | | 12. | Misconfiguration detection of inverter-based units in power | | | | distribution grids using machine learning | 269 | | | David Fellner, Thomas I. Strasser, and Wolfgang Kastner | | | | 12.1 Introduction | 269 | | | 12.2 Monitoring and detection framework | 272 | | | 12.3 Employed approaches | 277 | | | 12.4 Use case example 12.5 Conclusions References | 285
288
289 | |-----|---|---| | 13. | Virtual inertia provision from distribution power
systems using machine learning
Simon Stock, Davood Babazadeh, and Christian Becker | 293 | | | 13.1 Introduction 13.2 Inertia support framework 13.3 Conclusions References | 293
299
317
318 | | 14. | Electricity demand flexibility estimation in warehouses using machine learning Farzad Dadras Javan, Italo Aldo Campodonico Avendano, Ali Kaboli, Behzad Najafi, Amin Moazami, Sara Perotti, and Fabio Rinaldi | 323 | | | 14.1 Introduction14.2 Methodology14.3 Machine learning algorithms, correlation index, and utilized accuracy | 323
331 | | | metrics 14.4 Results and discussion 14.5 Conclusion Acknowledgment References | 335
338
342
343
343 | | 15. | The role of eXplainable Artificial Intelligence (XAI) in smart grids Gokcen Ozdemir, Murat Kuzlu, Salih Sarp, Ferhat Ozgur Catak, Berhane Darsene Dimd, and Umit Cali | 349 | | | 15.1 Introduction 15.2 A brief overview of XAI and its tools 15.3 XAI-based big data applications in electric power systems 15.4 Explainability to end users and control room operators 15.5 Challenges and opportunities of XAI in electric power systems 15.6 Conclusion Acknowledgment | 349
351
354
362
363
364
364 | | | References | 364 | X Contents | 16. | Data-driven photovoltaic and wind power forecasting for distribution grids | 371 | |-------|---|-----| | | Marco Pierro, Azim Heydari, David Moser, and Grazia Barchi | | | | 16.1 Introduction | 371 | | | 16.2 The role of RES power forecasting in modern power systems16.3 Classification of PV and wind power forecasting approaches | 372 | | | based on models, time horizon, and data | 374 | | | 16.4 Accuracy of the PV/wind power forecasting models16.5 Day-ahead residual load forecasting in a distribution grid with | 377 | | | distributed PV generation | 381 | | | 16.6 Conclusions | 389 | | | References | 390 | | 17. | Grid resilience against wildfire with machine learning: Machine learning based detection, localization and mitigation of the impact of forest fires on power grids Paroma Chatterjee, Salah Uddin Kadir, Anurag Srivastava, and Aron Laszka | 393 | | | | | | | 17.1 Introduction | 393 | | | 17.2 Impact of wildfires on power systems | 398 | | | 17.3 Current wildfire management techniques | 400 | | | 17.4 Enabling power grid resilience to wildfire 17.5 Conclusion and future work | 410 | | | | 413 | | | Acknowledgment
References | 413 | | | vereletices | 413 | | Index | | 419 |