

Contents

Aboui Prefac	ibutors t the editors ce, objective, and overview of the book	xi xv xvii
Ackne	owledgments for the second edition	xix
SEC	TION A Harness the big data from power systems	
1.	A holistic approach to becoming a data-driven utility John D. McDonald	3
	 1.1 Introduction 1.2 Aligning internal and external stakeholders 1.3 Taking a holistic approach 1.4 "Strong" first, then "smarter" 1.5 Implementing an "Observability Strategy" 1.6 Increasing visibility with IEDs 1.7 Network response requirements 1.8 Integration before automation 1.9 Functional data paths: Keep it simple 1.10 From sensor to end user: The process 1.11 Customers > consumers > prosumers 1.12 New sources of data: Robotics and UAVs 1.13 Extracting value from data and presenting it 1.14 The transformation 1.15 Three case studies 1.16 Frankfort, Kentucky, and greenfield SCADA, SA 1.17 Unmanned aerial vehicles for vegetation management 1.18 Robotics for substation asset management 1.19 Conclusion 1.20 Looking ahead References 	3 6 6 7 8 100 111 144 155 166 177 211 23 244 255 266 28 30 32 33 34
2.	Security and data privacy challenges for data-driven utilities Carol L. Stimmel	37
	2.1 Introduction2.2 Case studies: The state and scope of the threat	37 38

V	VI	

Contents

	2.3 The digitized network increases vulnerability	44
	2.4 The role of data analytics	48
	2.5 Conclusion	50
	References	51
3.	The role of big data and analytics in utilities innovation	53
	Jeffrey S. Katz	
	3.1 Introduction of big data and analytics as an accelerator of	p= 14
	innovation 3.2 Approaches to data-driven innovation	53 55
	3.3 Integration of renewable energy	57
	3.4 Grid operations	59
	3.5 Cognitive computing on big data	63
	3.6 Weather, the biggest data topic for power systems	65
	References	67
	Further reading	68
4.	Big data integration for the digitalization and decarbonization	
٠,	of distribution grids	69
	Nuran Cihangir Martin, Tania M. Vazquez Sanchez, Selene Liverani, and Anita Gianelli	
	4.1 Introduction: Challenges toward a net-zero economy	69
	4.2 Grid observability and controllability	72
	4.3 Key drivers of the digital transformation in distribution grids	75
	4.4 Losses and fault detection	81
	4.5 Conclusions	84
	References	85
	Further reading	86
SE	CTION B Put the power of big data into power systems	
5.	Topology detection in distribution networks with machine	
	learning	89
	Deepjyoti Deka and Michael Chertkov	
	5.1 Introduction	89
	5.2 Distribution grid: Structure and power flows	92
	5.3 Properties of voltage magnitudes in radial grids	95
	5.4 Topology learning with full observation	98

Contents	1
CHIPHIS	
COTTECTION	

	5.5 Topology learning with missing data5.6 Experiments5.7 ConclusionsReferences	100 104 107 107
6.	Grid topology identification via distributed statistical hypothesis testing Saverio Bolognani and Keith Moffat	109
	6.1 Introduction6.2 Power distribution grid model6.3 Voltage conditional correlation analysis6.4 A distributed topology test6.5 ConclusionsReferences	109 111 113 124 131 132
7.	Learning stable local Volt/Var controllers in distribution grids Zhenyi Yuan, Guido Cavraro, and Jorge Cortés	135
	 7.1 Introduction 7.2 Grid modeling and problem formulation 7.3 Equilibrium functions depending only on voltage 7.4 Equilibrium functions with reactive power as an additional argument 7.5 Learning equilibrium functions from data 7.6 Case study 7.7 Conclusions Acknowledgments References 	135 138 143 146 147 150 157 157
8.	Grid-edge optimization and control with machine learning Anamika Dubey, Daniel Glover, and Gayathri Krishnamoorthy 8.1 Introduction 8.2 Optimal power flow methods for grid-edge coordination 8.3 Learning-based control/optimization at the grid edge 8.4 Future research directions	161 161 162 167 18
	References	184

Contents

9.	Fault detection in distribution grid with spatial-temporal recurrent graph neural networks	189
	Bang Nguyen and Tuyen Vu	
	9.1 Introduction	189
	9.2 Use case and data description	192
	9.3 Methodology	196
	9.4 Results and discussions	204
	9.5 Conclusion and future work	211
	References	212
	Further reading	215
10.	Supervised learning-based fault location in power	
	grids	217
	Hanif Livani	
	10.1 Fundamentals of SVM	217
	10.2 Power system applications of SVM	220
	10.3 Fault classification and location for three-terminal transmission	
	lines	222
	10.4 Fault location for hybrid HVAC transmission lines	229
	10.5 Summary References	233
	neierences	233
11.	Transient stability predictions in modern power systems using	
	transfer learning	235
	Maeshal Hijazi, Payman Dehghanian, and Shiyuan Wang	
	11.1 Introduction	235
	11.2 Background	240
	11.3 The proposed framework	245
	11.4 Numerical tests and analysis	250
	11.5 Conclusions References	264
	References	265
12.	Misconfiguration detection of inverter-based units in power	
	distribution grids using machine learning	269
	David Fellner, Thomas I. Strasser, and Wolfgang Kastner	
	12.1 Introduction	269
	12.2 Monitoring and detection framework	272
	12.3 Employed approaches	277

	12.4 Use case example 12.5 Conclusions References	285 288 289
13.	Virtual inertia provision from distribution power systems using machine learning Simon Stock, Davood Babazadeh, and Christian Becker	293
	13.1 Introduction 13.2 Inertia support framework 13.3 Conclusions References	293 299 317 318
14.	Electricity demand flexibility estimation in warehouses using machine learning Farzad Dadras Javan, Italo Aldo Campodonico Avendano, Ali Kaboli, Behzad Najafi, Amin Moazami, Sara Perotti, and Fabio Rinaldi	323
	14.1 Introduction14.2 Methodology14.3 Machine learning algorithms, correlation index, and utilized accuracy	323 331
	metrics 14.4 Results and discussion 14.5 Conclusion Acknowledgment References	335 338 342 343 343
15.	The role of eXplainable Artificial Intelligence (XAI) in smart grids Gokcen Ozdemir, Murat Kuzlu, Salih Sarp, Ferhat Ozgur Catak, Berhane Darsene Dimd, and Umit Cali	349
	 15.1 Introduction 15.2 A brief overview of XAI and its tools 15.3 XAI-based big data applications in electric power systems 15.4 Explainability to end users and control room operators 15.5 Challenges and opportunities of XAI in electric power systems 15.6 Conclusion Acknowledgment 	349 351 354 362 363 364 364
	References	364

X Contents

16.	Data-driven photovoltaic and wind power forecasting for distribution grids	371
	Marco Pierro, Azim Heydari, David Moser, and Grazia Barchi	
	16.1 Introduction	371
	16.2 The role of RES power forecasting in modern power systems16.3 Classification of PV and wind power forecasting approaches	372
	based on models, time horizon, and data	374
	16.4 Accuracy of the PV/wind power forecasting models16.5 Day-ahead residual load forecasting in a distribution grid with	377
	distributed PV generation	381
	16.6 Conclusions	389
	References	390
17.	Grid resilience against wildfire with machine learning: Machine learning based detection, localization and mitigation of the impact of forest fires on power grids Paroma Chatterjee, Salah Uddin Kadir, Anurag Srivastava, and Aron Laszka	393
	17.1 Introduction	393
	17.2 Impact of wildfires on power systems	398
	17.3 Current wildfire management techniques	400
	17.4 Enabling power grid resilience to wildfire 17.5 Conclusion and future work	410
		413
	Acknowledgment References	413
	vereletices	413
Index		419